首页 | 本学科首页   官方微博 | 高级检索  
     检索      

离子液体介导CO2化学转化研究进展
作者单位:1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
基金项目:National Natural Science Foundation of China(21890761);National Natural Science Foundation of China(21533011);Beijing Municipal Science & Technology Commission, China(Z191100007219009)
摘    要:

关 键 词:CO2  离子液体  转化  催化  高附加值化学品  
收稿时间:2020-10-12

Recent Progress on Ionic Liquid-Mediated CO2 Conversion
Authors:Huan Wang  Yunyan Wu  Yanfei Zhao  Zhimin Liu
Institution:1. Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China
Abstract:The efficient utilization of carbon dioxide (CO2) as a C1 feedstock is of great significance for green and sustainable development. Therefore, the efficient chemical conversion of CO2 into value-added products has recently attracted a lot of research attention in recent years. The transformation of CO2 generally requires high-energy substrates, specific catalysts, and harsh reaction conditions due to its high thermodynamic stability and kinetic inertness. Consequently, several efforts have been dedicated toward the development of high-performance catalysts and new reaction routes for CO2 conversion over the last few decades. To date, many routes of convert CO2 into value-added chemicals have been proposed, together with the development of heterogeneous and homogeneous catalysts. Among the advanced catalysts reported to date, ionic liquids (ILs) have been widely investigated and show great potential for the efficient, selective, and economical conversion of CO2 into highly valuable products under mild conditions, even under ambient conditions. Some task-specific ILs have been designed with unique functional groups (e.g., —OH, —SO3H, —NH2, —COOH, and —C≡N), which can act as the solvent, absorbent, activating agent, catalyst, or cocatalyst to realize the transformation of CO2 under metal-free and mild conditions. In addition, a variety of catalytic systems composed of ILs and metal catalysts have also been reported for the transformation of CO2, in which the combination of the IL and metal catalyst is responsible for CO2 conversion with high efficiency. In this review article, we summarize the recent advances in IL-mediated CO2 transformation into chemicals prepared via C—O, C—N, C—S, C—H, and C—C bond forming processes. ILs that can chemically capture CO2 with high capacity are first introduced, which can activate CO2 via the formation of IL-based carbonates or carbamates, thus realizing the transformation of CO2 under metal-free and mild conditions. Recent progress in IL-mediated CO2 transformations to form carbonates and various kinds of N- and S-containing compounds (e.g., oxazolidinones, ureas, benzimidazolones, formamides, methylamines, benzothiazoles, and other chemicals) as well as CO2 hydrogenation to give formic acid, methane, acetic acid, low-carbon alcohols, and hydrocarbons has been summarized in this review with a focus on the reaction routes, catalytic systems, and reaction mechanism. In these reactions, ILs can simultaneously activate the substrate via strong H-bonding in addition to activating CO2, and the cooperative effects among the ionic and molecular species and metal catalysts accomplish the reactions of CO2 with various kinds of substrates to afford a wide range of value-added chemicals. Finally, the shortcomings and perspectives of ILs are discussed. In short, IL-mediated CO2 transformations provide green and effective routes for the synthesis of high-value chemicals, which may have great potential for a wide range of applications.
Keywords:CO2  Ionic liquid  Conversion  Catalysis  Value-added chemicals  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号