首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   12篇
  国内免费   17篇
化学   121篇
力学   6篇
综合类   1篇
数学   6篇
物理学   95篇
  2023年   51篇
  2022年   2篇
  2021年   5篇
  2020年   8篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   3篇
  2014年   18篇
  2013年   14篇
  2012年   6篇
  2011年   13篇
  2010年   6篇
  2009年   4篇
  2008年   15篇
  2007年   10篇
  2006年   12篇
  2005年   6篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2001年   8篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   2篇
  1995年   4篇
  1993年   2篇
  1991年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有229条查询结果,搜索用时 78 毫秒
1.
Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3BX6 type cyanometallate [Ph2(iPrNH)2P]3[Fe(CN)6] ( 1 ), which shows a ferroelectric saturation polarization (Ps) of 3.71 μC cm−2. Compound 1 exhibits a high electrostrictive coefficient (Q33) of 0.73 m4 C−2, far exceeding those of piezoceramics (0.034–0.096 m4 C−2). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1 -TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 μW cm−2.  相似文献   
2.
Despite carbonate electrolytes exhibiting good stability to sulfurized polyacrylonitrile (SPAN), their chemical incompatibility with lithium (Li) metal anode leads to poor electrochemical performance of Li||SPAN full cells. While the SPAN employs conventional ether electrolytes that suffer from the shuttle effect, leading to rapid capacity fading. Here, we tailor a dilute electrolyte based on a low solvating power ether solvent that is both compatible with SPAN and Li metal. Unlike conventional ether electrolytes, the weakly solvating ether electrolyte enables SPAN to undergo reversibly “solid–solid” conversion. It features an anion–rich solvation structure that allows for the formation of a robust cathode electrolyte interphase on the SPAN, effectively blocking the dissolution of polysulfides into the bulk electrolyte and avoiding the shuttle effect. What's more, the unique electrolyte chemistry endowed Li ions with fast electroplating kinetics and induced high reversibility Li deposition/stripping process from 25 °C to −40 °C. Based on tailored electrolyte, Li||SPAN full cells matched with high loading SPAN cathodes (≈3.6 mAh cm−2) and 50 μm Li foil can operate stably over a wide range of temperatures. Additionally, Li||SPAN pouch cell under lean electrolyte and 5 % excess Li conditions can continuously operate stably for over a month.  相似文献   
3.
The rapidly growing importance of green hydrogen and renewable carbon resources as essential feedstocks for sustainable chemical value chains opens room for disruptive innovations regarding chemical production processes. The fluctuation and variability associated with non-fossil energy and raw material supply holds many challenges for catalysts to cope with the resulting dynamics. However, many new opportunities also arise once catalyst design starts to aim at performance that is “adaptive” rather than “task-specific”. In this Scientific Perspective, we propose to define adaptivity in catalysis on the basis of three essential properties that are reversibility, rapidity, and robustness (R3 rule). Promising design strategies and selected examples are described to substantiate the scientific concept and to highlight its potential for chemical energy conversion.  相似文献   
4.
We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC , which endows aerobic N2-fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC /A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15N2 atmosphere led to the enrichment of 15N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2.  相似文献   
5.
以1,3-双[3-(1-甲氧基-2-羟基丙氧基)丙基]四甲基二硅氧烷和八甲基环四硅氧烷(D4)为原料,通过阳离子催化开环聚合制备了1,3-双(3-(1-甲氧基-2-羟基丙氧基)丙基)封端聚硅氧烷,研究了反应温度,反应时间,催化剂种类及加入量对于聚合反应的影响,结果表明,最佳反应条件为:反应温度65℃,反应时间24h,浓硫酸作为催化剂加入量为反应物质量的0.3%,此时反应拥有最高的转化率。通过红外光谱与核磁共振光谱对产物进行了表征。  相似文献   
6.
Optogenetics is a neuromodulation technology that combines light control technology with genetic technology, thus allowing the selective activation and inhibition of the electrical activity in specific types of neurons with millisecond time resolution. Over the past several years, optogenetics has become a powerful tool for understanding the organization and functions of neural circuits, and it holds great promise to treat neurological disorders. To date, the excitation wavelengths of commonly employed opsins in optogenetics are located in the visible spectrum. This poses a serious limitation for neural activity regulation because the intense absorption and scattering of visible light by tissues lead to the loss of excitation light energy and also cause tissue heating. To regulate the activity of neurons in deep brain regions, it is necessary to implant optical fibers or optoelectronic devices into target brain areas, which however can induce severe tissue damage. Non- or minimally-invasive remote control technologies that can manipulate neural activity have been highly desirable in neuroscience research. Upconversion nanoparticles (UCNPs) can emit light with a short wavelength and high frequency upon excitation by light with a long wavelength and low frequency. Therefore, UCNPs can convert low-frequency near-infrared (NIR) light into high-frequency visible light for the activation of light-sensitive proteins, thus indirectly realizing the NIR optogenetic system. Because NIR light has a large tissue penetration depth, UCNP-mediated optogenetics has attracted significant interest for deep-tissue neuromodulation. However, in UCNP-mediated in vivo optogenetic experiments, as the up-conversion efficiency of UCNPs is low, it is generally necessary to apply high-power NIR light to obtain up-converted fluorescence with energy high enough to activate a photosensitive protein. High-power NIR light can cause thermal damage to tissues, which seriously restricts the applications of UCNPs in optogenetic technology. Therefore, the exploration of strategies to increase the up-conversion efficiency, fluorescence intensity, and biocompatibility of UCNPs is of great significance to their wide applications in optogenetic systems. This review summarizes recent developments and challenges in UCNP-mediated optogenetics for deep-brain neuromodulation. We firstly discuss the correspondence between the parameters of UCNPs and employed opsins in optogenetic experiments, which mainly include excitation wavelengths, emission wavelengths, and luminescent lifetimes. Thereafter, we introduce the methods to enhance the conversion efficiency of UCNPs, including optimizing the structure of UCNPs and modifying the organic dyes in UCNPs. In addition, we also discuss the future opportunities in combining UCNP-mediated optogenetics with flexible microelectrode technology for the long-term detection and regulation of neural activity in the case of minimal injury.  相似文献   
7.
The naturally occurring aurones (2-benzylidene-3(2H)-benzofuran-3-ones) can be easily converted to another class of natural products 2-benzoylbenzo[b]furans, via an effective reduction, acid-mediated rearrangement, and oxidation cascade. This easy conversion was conducted without purification of intermediates. This straightforward conversion may be considered as a possible biosynthesis pathway of 2-benzoylbenzo[b]furans in plants.  相似文献   
8.
As zinc phosphate acts as a versatile material for potential biomedical applications, it was modified into a thin layer coating for orthopaedic applications in the present study. A unique layering system consisting of pure substrate (316L SS), thick Fe-Zn alloy layers, thin ZnP layer on which a hydroxyapatite (HA) layer, was developed and studied. The composition, surface morphology and corrosion resistance characteristics of the layering system was evaluated. The stability of the multi-layered coating system consisting of ZnP inter layer, was evaluated by subjecting to different extent of dissolution in aggressive physiological media followed by allowing for re-growth in simulated body fluid (SBF). The coating system revealed good stability.  相似文献   
9.
K-shell X-ray emission from laser-irradiated planar Zn, Ge, Br, and Zr foils was measured at the National Ignition Facility for laser irradiances in the range of 0.6–9.5 × 1015 W/cm2. The incident laser power had a pre-pulse to enhance the laser-to-X-ray conversion efficiency (CE) of a 2–5 ns constant-intensity pulse used as the main laser drive. The measured CE into the 8–16 keV energy band ranged from 0.43% to 2%, while the measured CE into the He-like resonance 1s2–1s2p(1P) and intercombination 1s2–1s2p(3P) transitions, as well as from their 1s2(2s,2p)l–1s2p(2s,2p)l satellite transitions for l = 1, 2, 3, corresponding to the Li-, Be-, and B-like resonances, respectively, ranged from 0.3% to 1.5%. Absolute and relative CE measurements are consistent with X-ray energy scaling of ()?3 to ()?5, where is the X-ray energy. The temporal evolution of the broadband X-ray power was similar to the main laser drive for ablation plasmas having a critical density surface.  相似文献   
10.
从全固态有机太阳能电池的历史发展情况和研究现状出发,对现阶段全固态有机太阳能电池的结构和性能作了介绍和评估,并从材料等方面分析了它们的优势和不足之处,讨论了全固态有机太阳能电池研究的未来发展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号