首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Viscoelastic effects on asymmetric two‐dimensional vortex patterns in a strongly coupled dusty plasma
Authors:Akanksha Gupta  Rupak Mukherjee  Rajaraman Ganesh
Abstract:Strongly coupled dusty plasma medium is often described as a viscoelastic fluid that retains its memory. In a flowing dusty plasma medium, vortices of different sizes appear when the flow does not remain laminar. The vortices also merge to transfer energy between different scales. In the present work, we study the effect of viscoelasticity and compressibility over a localized vortex structure and multiple rotational vortices in a strongly coupled viscoelastic dusty plasma medium. In case of single rotating vortex flow, a transverse wave is generated from the localized vortex source and the evolution time of generated waves is found to be reduced due to finite viscoelasticity and compressibility of the medium. It is found that the viscoelasticity suppresses the dispersion of vorticity. In the presence of multiple vortices, we find, the vortex mergers get highly affected in the presence of memory effect of the fluid, and thus the dynamics of the medium gets completely altered compared to a non‐viscoelastic fluid. For a compressible fluid, viscoelasticity dampens the energy in the sonic waves generated in the medium. Thus a highly viscoelastic and compressible fluid, in some cases, behaves similarly to an incompressible viscoelastic fluid. The wave‐front like rings propagate in elliptical orbits keeping the footprint of the earlier position of the point‐vortex. The rings collide with each other even within the patch vortex region forming regions of high vorticity at the point of intersection and pass through each other.
Keywords:compressibility  dusty plasma  viscoelasticity  vortex flow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号