首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Canopy Catalysts for Alkyne Metathesis: Investigations into a Bimolecular Decomposition Pathway and the Stability of the Podand Cap
Authors:Dr Julius Hillenbrand  J Nepomuk Korber  Dr Markus Leutzsch  Nils Nöthling  Prof Alois Fürstner
Institution:Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der RuhrMülheim/Ruhr, Germany
Abstract:Molybdenum alkylidyne complexes with a trisilanolate podand ligand framework (“canopy catalysts”) are the arguably most selective catalysts for alkyne metathesis known to date. Among them, complex 1 a endowed with a fence of lateral methyl substituents on the silicon linkers is the most reactive, although fairly high loadings are required in certain applications. It is now shown that this catalyst decomposes readily via a bimolecular pathway that engages the Mo≡CR entities in a stoichiometric triple-bond metathesis event to furnish RC≡CR and the corresponding dinuclear complex, 8 , with a Mo≡Mo core. In addition to the regular analytical techniques, 95Mo NMR was used to confirm this unusual outcome. This rapid degradation mechanism is largely avoided by increasing the size of the peripheral substituents on silicon, without unduly compromising the activity of the resulting complexes. When chemically challenged, however, canopy catalysts can open the apparently somewhat strained tripodal ligand cages; this reorganization leads to the formation of cyclo-tetrameric arrays composed of four metal alkylidyne units linked together via one silanol arm of the ligand backbone. The analogous tungsten alkylidyne complex 6 , endowed with a tripodal tris-alkoxide (rather than siloxide) ligand framework, is even more susceptible to such a controlled and reversible cyclo-oligomerization. The structures of the resulting giant macrocyclic ensembles were established by single-crystal X-ray diffraction.
Keywords:alkyne metathesis  metal-metal bonding  metal alkylidynes  molybdenum  tungsten
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号