首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   514篇
  免费   129篇
  国内免费   26篇
化学   96篇
晶体学   1篇
力学   17篇
综合类   1篇
数学   84篇
物理学   470篇
  2023年   6篇
  2022年   10篇
  2021年   9篇
  2020年   11篇
  2019年   11篇
  2018年   11篇
  2017年   20篇
  2016年   13篇
  2015年   19篇
  2014年   21篇
  2013年   40篇
  2012年   30篇
  2011年   29篇
  2010年   24篇
  2009年   39篇
  2008年   38篇
  2007年   24篇
  2006年   31篇
  2005年   14篇
  2004年   15篇
  2003年   29篇
  2002年   27篇
  2001年   36篇
  2000年   27篇
  1999年   23篇
  1998年   29篇
  1997年   7篇
  1996年   12篇
  1995年   5篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   4篇
  1989年   2篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
  1963年   1篇
排序方式: 共有669条查询结果,搜索用时 78 毫秒
1.
We report the results of our investigation of magnetization and heat capacity on a series of compounds Ce1?xYxNiGe2 (x=0.1,0.2 and 0.4) under the influence of external magnetic field. Our studies of the thermodynamic quantity ?dM/dT on these compounds indicate that magnetic frustration persists in Ce0.9Y0.1NiGe2, as also reported for the parent compound CeNiGe2. The weak signature of this frustration is also noted in Ce0.8Y0.2NiGe2, whereas, it is suppressed in Ce0.6Y0.4NiGe2. Heat capacity studies on Ce0.9Y0.1NiGe2 and Ce0.8Y0.2NiGe2 indicate the presence of a new magnetic anomaly at high field which indicates that quantum criticality is absent in these compounds. However, for Ce0.6Y0.4NiGe2 such an anomaly is not noted. For this later compound, the magnetic field (H) and temperature (T) dependence of heat capacity and magnetization obey H/T scaling above critical fields. However, the obtained scaling critical parameter (δ) is 1.6, which is away from mean field value of 3. This deviation suggests the presence of unusual fluctuations and anomalous quantum criticality in these compounds. This unusual fluctuation may arise from disorderness induced by Y-substitution.  相似文献   
2.
3.
We report multidynamic molecular rotations in crystals using a concave-shape N-heterocyclic carbene (NHC) binuclear Au(I) complex rotor bearing pyrazine and tetrahydrofuran (THF) molecules as multicomponent rotators. Single-crystal X-ray diffraction (XRD) measurements revealed that two THF molecules are located near the central pyrazine encapsulated by two bulky NHC ligands. From 2H solid-state NMR analysis, it was observed that the pyrazine rotated in a 2-fold site exchange with a 180° rotational angle and a 31 kJ mol−1 energy barrier, while the THF molecules showed a 23°-38° libration with a lower energy barrier (14 kJ mol−1). Interestingly, the pyrazine rotation was accelerated when the THF molecules rotated in fast site exchange with a large angle of libration, suggesting that the rotators exhibit multidynamics in a correlated manner.  相似文献   
4.
A selective review of the question of how repulsive electron correlations might give rise to off‐diagonal long‐range order (ODLRO) in high‐temperature superconductors is presented. The article makes detailed explanations of the relevance to superconductivity of reduced electronic density matrices and how these can be used to understand whether ODLRO might arise from Coulombic repulsions in strongly correlated electronic systems. Time‐reversed electron pairs on alternant Cuprate and the iron‐based pnictide and chalcogenide lattices may have a weak long‐range attractive tail and much stronger short‐range repulsive Coulomb interaction. The long‐range attractive tail may find its origin in one of the many suggested proposals for high‐Tc superconductivity and thus has an uncertain origin. A phenomenological Hamiltonian is invoked whose model parameters are obtained by fitting to experimental data. A detailed summary is given of the arguments that such interacting electrons can cooperate to produce a superconducting state in which time‐reversed pairs of electrons effectively avoid the repulsive hard‐core of the Coulomb interaction but reside on average in the attractive well of the long‐range potential. Thus, the pairing of electrons itself provides an enhanced screening mechanism. The alternant lattice structure is the key to achieving robust high‐temperature superconductivity with dx2‐y2 or sign alternating s‐wave or s± condensate symmetries in cuprates and iron‐based compounds. Some attention is also given to the question first raised by Leggett as to where the Coulombic energy is saved in the superconducting transition in cuprates. A mean‐field‐type model in which the condensate density serves as an order parameter is discussed. Many of the observed trends in the thermal properties of cuprate superconductors are reproduced giving strong support for the proposed model for high‐temperature superconductivity in such strongly correlated electronic systems. © 2015 Wiley Periodicals, Inc.  相似文献   
5.
To investigate the correlation between the wavelength dependence of ionization threshold fluence of target molecule in matrix‐assisted laser desorption/ionization by infrared (IR) laser and the IR absorption spectrum of matrix molecule, we have analyzed the IR absorption spectra of four matrix molecules using density functional theory and correlated ab initio molecular orbital method. The calculated IR absorption spectra of the isolated molecules showed more qualitative correlation with the wavelength dependence of ionization threshold fluence than those of the solid state structures. We can consider that a portion of matrix molecules lost the ordered crystal structure and that the transition to the diluted or isolated state occurred at the early process of IR laser irradiation. © 2012 Wiley Periodicals, Inc.  相似文献   
6.
Nash equilibria and correlated equilibria of classical and quantum games are investigated in the context of their Pareto efficiency. The examples of the prisoner’s dilemma, battle of the sexes and the game of chicken are studied. Correlated equilibria usually improve Nash equilibria of games but require a trusted correlation device susceptible to manipulation. The quantum extension of these games in the Eisert–Wilkens–Lewenstein formalism and the Frąckiewicz–Pykacz parameterization is analyzed. It is shown that the Nash equilibria of these games in quantum mixed Pauli strategies are closer to Pareto optimal results than their classical counter-parts. The relationship of mixed Pauli strategies equilibria and correlated equilibria is also studied.  相似文献   
7.
This paper studies a generalized version of multi-class cost-constrained random-coding ensemble with multiple auxiliary costs for the transmission of N correlated sources over an N-user multiple-access channel. For each user, the set of messages is partitioned into classes and codebooks are generated according to a distribution depending on the class index of the source message and under the constraint that the codewords satisfy a set of cost functions. Proper choices of the cost functions recover different coding schemes including message-dependent and message-independent versions of independent and identically distributed, independent conditionally distributed, constant-composition and conditional constant composition ensembles. The transmissibility region of the scheme is related to the Cover-El Gamal-Salehi region. A related family of correlated-source Gallager source exponent functions is also studied. The achievable exponents are compared for correlated and independent sources, both numerically and analytically.  相似文献   
8.
9.
A microscopic cluster model with a fully correlated Gaussian basis is developed. In the model, the stochastic variational method is used in order to calculate the ground-energy and the mean-square radius conveniently. Based on this model, the ground-energy level and radius of the neutron halo nucleus, <'6>He, are calculated as a α+n+n three-cluster model. The results are in good agreement with the experimental data.  相似文献   
10.
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non‐Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z‐component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half‐filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non‐Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号