首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2011年   1篇
  2009年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
In recent years, increasing attention has been paid to “soft” photoionization (PI), which will potentially become a standard, universal ionization method. Tunable synchrotron vacuum ultraviolet (SVUV) light, a quasi-continuous light with good energy resolution and high photon flux, has proved an ideal source for “soft” PI in various research fields (e.g., combustion chemistry and molecular imaging).This review focuses on combinations of SVUV light with commonly used techniques (e.g., molecular-beam sampling, laser desorption, ion desorption, and thermal vaporization). These couplings have successful applications in flame chemistry, organic analysis, chemical imaging and aerosol mass spectrometry.  相似文献   
2.
A slightly sooting premixed ethylbenzene flame with an equivalence ratio of 1.90 was investigated at low pressure (4.0 kPa) using molecular-beam mass spectrometry (MBMS) and tunable synchrotron vacuum ultraviolet (VUV) photoionization. Basing on the ionization threshold measurements of photoionization efficiency (PIE) spectra, combustion intermediates up to C19H12 were identified, including a number of radicals and isomeric species. Mole fraction profiles of observed flame species were evaluated from the measurements of burner scan at the photon energies near ionization thresholds. Besides, the flame temperature profile was measured by a Pt/Pt-13%Rh thermocouple. From the intermediate identification and mole fraction measurements, the degradation of ethylbenzene, as well as the formation of some interested polycyclic aromatic hydrocarbons (PAHs), was discussed in detail. It is suggested that the formation of most typical PAHs observed in this work can be related to the H-abstraction/C2H2-addition (HACA) mechanism. Furthermore, the high concentration levels of intermediates in this flame is ascribed to the weak C-C bonds in the sidechain of ethylbenzene, which provides a potential explanation of the high sooting tendencies of ethylbenzene and other monocyclic aromatic fuels with complex sidechain structure. This study is anticipated to be constructive for combustion investigations of aromatic fuels, and the discussion is hoped to be helpful for further modeling studies concerning PAHs formation in combustion process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号