首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pinenes and pinene dimers have similar energy densities to petroleum-based fuels and are regarded as alternative fuels. The pyrolysis of the pinenes is well studied, but information on their combustion kinetics is limited. Three stoichiometric, flat premixed flames of the C10H16 monoterpenes α-pinene, β-pinene, and myrcene were investigated by synchrotron-based photoionization molecular-beam mass spectrometry (PI-MBMS) at the Advanced Light Source (ALS). This technique allows isomer-resolved identification and quantification of the flame species formed during the combustion process. Flame-sampling molecular-beam mass spectrometry even enables the detection of very reactive radical species. Myrcene was chosen because of its known formation during β-pinene pyrolysis. The quantitative speciation data and the discussed decomposition steps of the fuels provide important information for the development of future chemical kinetic reaction mechanisms concerning pinene combustion. The main decomposition of myrcene starts with the unimolecular cleavage of the carbon-carbon single bond between the two allylic carbon atoms. Further decompositions by β-scission to stable combustion intermediates such as isoprene (C5H8), 1,2,3-butatriene (C4H4) or allene (aC3H4) are consistent with the observed species pool. Concentrations of all detected hydrocarbons in the β-pinene flame are closer to the myrcene flame than to the α-pinene flame. These similarities and the direct identification of myrcene by its photoionization efficiency spectrum during β-pinene combustion indicate that β-pinene undergoes isomerization to myrcene under the studied flame conditions. Aromatic species such as phenylacetylene (C8H6), styrene (C8H8), xylenes (C8H10), and indene (C9H8) could be clearly identified and have higher concentrations in the α-pinene flame. Consequently, a higher sooting tendency can generally be expected for this monoterpene. The presented quantitative speciation data of flat premixed flames of the three monoterpenes α-pinene, β-pinene, and myrcene give insights into their combustion kinetics.  相似文献   

2.
Experimental measurements were conducted for temperatures and mole fractions of C1–C16 combustion intermediates in laminar coflow non-premixed methane/air flames doped with 3.9% (in volume) 1-butanol, 2-butanol, iso-butanol and tert-butanol, respectively. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) technique was utilized in the measurements of species mole fractions. The results show that the variant molecular structures of butyl alcohols have led to different efficiencies in the formation of polycyclic aromatic hydrocarbons (PAHs) that may cause the variations in sooting tendency. Detailed species information suggests that the presence of allene and propyne promotes benzene formation through the C3H3 + C3H4 reactions and consequently PAH formation through the additions of C2 and C3 species to benzyl or phenyl radicals. As a matter of fact, PAHs formed from the 1-butanol doped flame are the lowest among the four investigated flames, because 1-butanol mainly decomposes to ethylene and oxygenates rather than C3 hydrocarbon species. Meanwhile, the tert-butanol doped flame generates the largest quantities of allene and propyne among the four flames and therefore is the sootiest one.  相似文献   

3.
A comprehensive experimental study of the premixed benzene/oxygen/argon flame at 4.0 kPa with a fuel equivalence ratio (?) of 1.78 has been performed with the tunable synchrotron photoionization and molecular-beam sampling mass spectrometry. Isomers of most observed species in the flame have been unambiguously identified by measurements of the photoionization efficiency spectra. Mole fraction profiles of species up to C16H10 have been measured at the selective photon energies near ionization thresholds, and the flame temperature profile is obtained using Pt/Pt-13%Rh thermocouple. Compared with previous studies on benzene flames by Bittner and Howard, and by Defoeux et al., a number of new species are observed in the present work. These new combustion intermediates should be included in the kinetic models of the growth of polycyclic aromatic hydrocarbons (PAHs) and benzene oxidation. Free radicals detected in the flame include CH3, C2H, C2H3, C2H5, C3H, C3H3, C3H5, C4H, C4H3, C4H5, C4H7, C5H3, C5H5, C5H7, C6H5, C6H5O, C7H7, and C9H7. More significantly, isomers of some PAHs have been identified, which should be of importance in understanding the mechanism of soot formation.  相似文献   

4.
A premixed nitromethane/oxygen/argon flame at low pressure (4.67 kPa) has been investigated using tunable vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry. About 30 flame species including hydrocarbons, oxygenated and nitrogenous intermediates have been identified by measurements of photoionization efficiency spectra. Mole fraction profiles of the flame species have been determined by scanning burner position at some selected photon energies. The results indicate that N2 and NO are the major nitrogenous products in the nitromethane flame. Compared with previous studies on nitromethane combustion, a number of unreported intermediates, including C3H4, C4H6, C4H8, C2H2O, C2H4O, CH3CN, H2CNHO, C3H3N and C3H7N, are observed in this work. Based on our experimental results and previous modeling studies, a detailed oxidation mechanism including 69 species and 314 reactions has been developed to simulate the flame structure. Despite some small discrepancies, the predictions by the modeling study are in reasonable agreement with the experimental results.  相似文献   

5.
A combination of experimental and kinetic modeling study is performed to explore synergistic effects between toluene and C3H4 isomers on the formation of polycyclic aromatic hydrocarbons (PAHs) and pyrolysis reactivity. Co-pyrolysis of toluene-allene and toluene-propyne is investigated in a flow reactor employing synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) at 0.04 bar and 1 bar. Mole fraction profiles of fuels and intermediates up to two-ring PAHs are obtained. A kinetic model for co-pyrolysis of toluene-C3H4 isomers is established and examined against the present data. Sampled mass-specific photoionization efficiency (PIE) curves are employed to identify the presence of aliphatic aromatic species, favoring specific perception into interactions between phenyl/benzyl radicals and C3 species. The synergistic effects observed in this work are not sensitive to the molecular structure of allene and propyne but quite sensitive to the experimental pressures. The reason being that the interactions between phenyl/benzyl radicals and small molecules like CH3, C2H2 and C3H3 are pressure dependent. Both experimental and simulation results indicate the essential role of the aliphatically substituted aromatic in the growth reactions. Indene and naphthalene are identified as the predominant C9H8 and C10H8 products respectively, in all cases studied. Channels leading to the formation of indene and naphthalene vary with pressure, according to rate-of-production (ROP) analyses. The phenyl + C3H4/C3H3 channel and benzyl + C2H2 channel make comparable contributions to the formation of indene at 0.04 bar, while the latter channel dominates the formation of indene at 1 bar. Both C7H5 + C3H3 channel and benzyl + C3H3 channel can lead to the formation of naphthalene at 0.04 bar, while the latter channel is more competitive at 1 bar.  相似文献   

6.
The combustion chemistry of tetramethylethylene (TME) was studied in a premixed laminar low-pressure hydrogen flame by combined photoionization molecular-beam mass spectrometry (PI-MBMS) and photoelectron photoion coincidence (PEPICO) spectroscopy at the Swiss Light Source (SLS) of the Paul Scherrer Institute in Villigen, Switzerland. This hexene isomer with the chemical formula C6H12 has a special structure with only allylic CH bonds. Several combustion intermediate species were identified by their photoionization and threshold photoelectron spectra, respectively. The experimental mole fraction profiles were compared to modeling results from a recently published kinetic reaction mechanism that includes a TME sub-mechanism to describe the TME/H2 flame structure. The first stable intermediate species formed early in the flame front during the combustion of TME are 2-methyl-2-butene (C5H10) at a mass-to-charge ratio (m/z) of 70, 2,3-dimethylbutane (C6H14) at m/z 86, and 3-methyl-1,2-butadiene (C5H8) at m/z 68. Isobutene (C4H8) is also a dominant intermediate in the combustion of TME and results from consumption of 2-methyl-2-butene. In addition to these hydrocarbons, some oxygenated species are formed due to low-temperature combustion chemistry in the consumption pathway of TME under the investigated flame conditions.  相似文献   

7.
Detailed kinetic modeling and flame-sampling molecular-beam time-of-flight mass spectrometry are combined to unravel important pathways leading to the formation of benzene in a premixed laminar low-pressure 1,3-butadiene flame. The chemical kinetic model developed is compared with new experimental results obtained for a rich (? = 1.8) 1,3-butadiene/O2/Ar flame at 30 Torr and with flame data for a similar but richer (? = 2.4) flame reported by Cole et al. [Combust. Flame 56 (1) (1984) 51-70]. The newer experiment utilizes photoionization by tunable vacuum-ultraviolet synchrotron radiation, which allows for the identification and separation of combustion species by their characteristic ionization energies. Predictions of mole fractions as a function of distance from the burner of major combustion intermediates and products are in overall satisfactory agreement with experimentally observed profiles. The accurate predictions of the propargyl radical and benzene mole fractions permit an assessment of potential benzene formation pathways. The results indicate that C6H6 is formed mainly by the C3H3 + C3H3 and i-C4H5 + C2H2 reactions, which are roughly of equal importance. Smaller contributions arise from C3H3 + C3H5. However, given the experimental and modeling uncertainties, other pathways cannot be ruled out.  相似文献   

8.
n-Heptane has been used extensively in various fundamental combustion experiments as a prototypical hydrocarbon fuel. While the formation of polycyclic aromatic hydrocarbon (PAH) in n-heptane combustion has been studied preferably in premixed flames, this study aims to investigate the combustion chemistry of n-heptane in less-studied diffusion flame and highly rich high-temperature homogeneous oxidation configurations by using a counterflow burner and a flow reactor, respectively. This work addresses the formation of higher-molecular species in the mass range up to about 160 u in both configurations. Samples are analyzed by time-of-flight (TOF) molecular beam mass spectrometry (MBMS) using electron-impact (EI) and single-photon ionization (PI). Highly resolved speciation data are reported. Laminar flow reactor experiments cover a wide temperature range. Especially the measurements at low temperatures provide speciation data of large oxygenates produced in the low-temperature oxidation of n-heptane, which are scarce in the literature. Important precursor molecules for PAH and soot formation, such as C9H8, C10H8, C11H10, and C12H8, are formed during the high-temperature combustion process in the counterflow flame, while oxygenated growth species are observed under low-temperature conditions, even at the fuel-rich equivalence ratio of ?=4.00.Numerical modeling for both conditions is performed by using a newly developed kinetic model of n-heptane, which includes the n-heptane and PAH formation chemistry with state-of-the-art kinetic knowledge. Good agreement between model predictions and experimental data of counterflow flame and flow reactor is observed for the major species and some intermediates of n-heptane oxidation. While the concentrations of benzene and toluene measured in the counterflow burner are well-reproduced, the numerical results for flow reactor data are not satisfactory. Differences are found between the formation pathways of fulvene, from whose isomerization benzene is produced in diffusion flame and flow reactor.  相似文献   

9.
Modelling of aromatics and soot formation from large fuel molecules   总被引:2,自引:0,他引:2  
There is a need for prediction models of soot particles and polycyclic aromatic hydrocarbons (PAHs) formation in parametric conditions prevailing in automotive engines: large fuel molecules and high pressure. A detailed kinetic mechanism able to predict the formation of benzene and PAHs up to four rings from C2 fuels, recently complemented by consumption reactions of decane, was extended in this work to heptane and iso-octane oxidation. Species concentrations measured in rich, premixed flat flames and in a jet stirred reactor (JSR) were used to check the ability of the mechanism to accurately predict the formation of C2 and C3 intermediates and benzene at pressures ranging from 0.1 to 2.0 MPa. Pathways analyses show that propargyl recombination is the only significant route to benzene in rich heptane and iso-octane flames. When included as the first step of a soot particle formation model, the gas-phase kinetic mechanism predicts very accurately the final soot volume fraction measured in a rich decane flame at 0.1 MPa and in rich ethylene flames at 1.0 and 2.0 MPa.  相似文献   

10.
本文报道了我们发展的一个包含176个物种和806个反应的乙基苯火焰模型,用于模拟4.0 kPa压力下的富燃乙基苯火焰(φ=1.90)。结果表明本模型可以很好地预测各种产物及中间体的摩尔分数曲线。通过生成速率分析得到了乙基苯在富燃条件下的反应路径。分析结果显示,乙基苯在富燃条件下的主要分解路径为C6H5C2H5→C6H5CH2→C7H6→C5H54→C3H3→C3H2,产生的C3H2再经过氧化反应序列生成主要产物CO。此外,乙基苯支链上一系列的脱氢/β-断键反应也对乙基苯的分解具有不可忽视的作用。本模型为发展长链芳香烃模型打下了基础,有助于对未来实用燃料和航空替代燃料中长链芳香烃燃烧持性进行预测。  相似文献   

11.
The flame chemistry was explored for two C5 ketones with distinct structural features, cyclopentanone (CPO) and diethyl ketone (DEK). Quantitative information for numerous species, including some reactive intermediates, was probed from fuel-rich (?= 1.5) laminar premixed flames fueled by the ketones with a photoionization molecular-beam mass spectrometer (PI-MBMS). Furthermore, a new kinetic model was proposed aimed at interpreting the high-temperature combustion chemistry for both ketones, which could satisfactorily predict the current flame speciation measurements. Experimental observations in combination with modeling analyses were used to reveal the similarities and differences between the compositions of the species pools of the two flames, with emphasis on the effects of the carbonyl functionality on pollutants formations. Besides some primary species which preserve fuel-specific features produced from initial steps of fuel consumptions, basic C1C4 intermediates also differ much between the two flames. More abundant intermediates were observed in the CPO flame because the cyclic fuel structure enables ring-opening processes followed by formations of C3 and C4 hydrocarbons which cannot be easily produced from the two isolated ethyl moieties in DEK under flame conditions. The consumptions of C3C4 hydrocarbons in the CPO flame further lead to larger C5C6 species which were under the detection limit in the DEK flame. In both flames, the tightly bonded carbonyl groups in the fuels tend to be preserved, leading to carbon monoxide through α-scissions of fuel-related acyl radicals. The carbonyl moieties in most detected C1C3 aldehydes and ketones form through oxidations of hydrocarbon species rather than directly originating from the fuels.  相似文献   

12.
Recent advances in the field of laser desorption/laser ionization mass spectrometry (LD/LI/MS) have renewed interest in these separation methods for fast analysis of chemical species adsorbed on soot particles. These techniques provide mass-separation of the desorbed phase with high selectivity and sensitivity and require very small soot samples. Combining LD/LI/MS with in situ measurements of soot and gaseous species is very promising for a better understanding of the early stage of soot growth in flames. In this work, three lightly sooting laminar jet flames (a methane diffusion flame and two premixed acetylene flames of equivalence ratio (?) = 2.9 and 3.5) were investigated by combining prompt and 50 ns-delayed laser-induced incandescence (LII) for spatially resolved measurements of soot volume fraction (fv) and laser-induced fluorescence (LIF) of polycyclic aromatic hydrocarbons (PAH). Soot and PAH calibration is performed by two-colour cavity ring-down spectroscopy (CRDS) at 1064 and 532 nm. Soot particles were sampled in the flames and analysed by LD/LI/Time-of-flight- MS. Soot samples are cooled to −170 °C to avoid adsorbed phase sublimation (under high vacuum in the TOF-MS). Our set-up is novel because of its ability to measure very low concentration of soot and PAH together with the ability to identify a large mass range of PAHs adsorbed on soot, especially volatile two-rings and three-rings PAHs. Studied flames exhibited a peak fv ranging from 15 ppb (acetylene, ? = 2.9) to 470 ppb (acetylene, ? = 3.5). Different mass spectra were found in the three flames, each exhibiting one predominant PAH mass; 202 amu (4-rings) in methane, 178 amu (3-rings) in acetylene,? = 2.9 and 128 amu (2-rings) in acetylene, ? = 3.5. These variations with flame condition contrasts with other recent studies and is discussed. The other PAH masses ranged from 102 (C8H6) to 424 amu (C34H16) and are well predicted by the stabilomer grid of Stein and Farr.  相似文献   

13.
Blending petroleum-based fuels with biofuel components is deemed attractive to reduce soot and CO2 emissions, but fundamental studies of the combustion behavior of such fuel blends suited for model development and validation remain rather scarce. To contribute to the understanding of the combustion chemistry effects of such blending strategies, we have investigated laminar premixed low-pressure flames of three hydrocarbon base fuels, namely 1-butene (1-C4H8), isobutene (i-C4H8), and ethene (C2H4), blended each with two different ester fuels, namely methyl crotonate (C5H8O2, MC) and methyl butanoate (C5H10O2, MB). A series of 13 flames with different argon dilution was investigated to study effects of the specific fuel structure on the combustion chemistry. Full speciation analyses were performed for fuel-rich (? = 1.6) conditions by electron ionization molecular-beam mass spectrometry (EI-MBMS). More than 35 species in the range of C0–C7 were identified and quantified in these flames, resulting in ~450 mol fraction profiles. The experimental data were compared to simulations by the kinetic model reported by Yang et al. [Proc. Combust. Inst. 2011, Phys. Chem. Chem. Phys. 2013] that was chosen because it includes basic mechanisms of all studied fuels. Overall, the agreement of experiment and this model seems satisfactory but calls for further improvements regarding ester as well as hydrocarbon sub-mechanisms. It was noted that the unsaturation degree in the methyl esters affects the formation of hydrocarbons, that depend mainly on the structure of the respective base fuel, and of oxygenated intermediates. The methyl esters have different decomposition pathways leading to some specific oxygenated species. Both methyl esters promote the formation of formaldehyde and methanol, while acetic acid is significantly increased by the presence of MB. The effect of the ester addition is also influenced by the species pool of the respective hydrocarbon base fuel.  相似文献   

14.
Small methyl ketones are known to have high octane numbers, impressive knock resistance, and show low emissions of soot, NOx, and unburnt hydrocarbons. However, previous studies have focused on the analysis of smaller ketones and 3-pentanone, while the asymmetric 2-pentanone (methyl propyl ketone) has not gained much attention before. Considering ketones as possible fuels or additives, it is of particular importance to fully understand the combustion kinetics and the effect of the functional carbonyl group. Due to the higher energy density in a C5-ketone compared to the potential biofuel 2-butanone, the flame structure and the mole fraction profiles of species formed in 2-pentanone combustion are of high interest, especially to evaluate harmful species formations. In this study, a laminar premixed low-pressure (p?=?40 mbar) fuel-rich (??=?1.6) flat flame of 2-pentanone has been analyzed by vacuum-ultraviolet photoionization molecular-beam mass-spectrometry (VUV-PI-MBMS) enabling isomer separation. Quantitative mole fraction profiles of 47 species were obtained and compared to a model consisting of an existing base mechanism and a newly developed high-temperature sub-mechanism for 2-pentanone. High-temperature reactions for 2-pentanone were adapted in analogy to 2-butanone and n-pentane, and the thermochemistry for 2-pentanone and the respective fuel radicals was derived by ab initio calculations. Good agreement was found between experiment and simulation for the first decomposition products, supporting the initial branching reactions of the 2-pentanone sub-mechanism. Also, species indicating low-temperature chemistry in the preheating zone of the flame have been observed. The present measurements of a 2-pentanone flame provide useful validation targets for further kinetic model development.  相似文献   

15.
本文利用探针取样法结合同步辐射真空紫外光电离和分子束质谱技术研究了常压下的乙烯扩散火焰.通过测量光电离质谱和光电离效率谱分辨了该火焰中大部分的燃烧中间体及产物;通过改变探针取样位置以及半定量计算得到了其中部分燃烧中间体及产物的摩尔分数曲线.实验结果为探索多环芳烃和烟尘在扩散火焰中形成的最初阶段的反应机理提供了依据.  相似文献   

16.
Two laminar, premixed, fuel-rich flames fueled by anisole-oxygen-argon mixtures with the same cold gas velocity and pressure were investigated by molecular-beam mass spectrometry at two synchrotron sources where tunable vacuum-ultraviolet radiation enables isomer-resolved photoionization. Decomposition of the very weak O–CH3 bond in anisole (C6H5OCH3) by unimolecular decomposition yields the resonantly-stabilized phenoxy radical (C6H5O). This key intermediate species opens reaction routes to five-membered ring species, such as cyclopentadiene (C5H6) and cyclopentadienyl radicals (C5H5). Anisole is often discussed as model compound for lignin to study the phenolic-carbon structure in this natural polymer. Measured temperature profiles and mole fractions of many combustion intermediates give detailed information on the flame structure. A very comprehensive reaction mechanism from the literature which includes a sub-scheme for anisole combustion is used for species modeling. Species with the highest measured mole fractions (on the order of 10?3–10?2) are CH3, CH4, C2H2, C2H4, C2H6, CH2O, C5H5 (cyclopentadienyl radical), C5H6 (cyclopentadiene), C6H6 (benzene), C6H5OH (phenol), and C6H5CHO (benzaldehyde). Some are formed in the first destruction steps of anisole, e.g., phenol and benzaldehyde, and their formation will be discussed and with regard to the modeling results. There are three major routes for the fuel destruction: (1) formation of benzaldehyde (C6H5CHO), (2) formation of phenol (C6H5OH), and (3) unimolecular decomposition of anisole to phenoxy (C6H5O) and CH3 radicals. In the experiment, the phenoxy radical could be measured directly. The phenoxy radical decomposes via a bicyclic structure into the soot precursor C5H5 and CO. Formation of larger oxygenated species was observed in both flames. One of them is guaiacol (2-methoxyphenol), which decomposes into fulvenone. The presented speciation data, which contain more than 60 species mole fraction profiles of each flame, give insights into the combustion kinetics of anisole.  相似文献   

17.
The detailed chemical structures of low-pressure premixed laminar flames fueled by three simple unsaturated C5H8O2 esters, the methyl crotonate (MC), methyl methacrylate (MMA), and ethyl propenoate (EPE), are investigated using tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. Significant differences in the compositions of key reaction intermediates between these flames under similar flame conditions are observed. The results enable further refinement and validation of a detailed chemical kinetic reaction mechanism, which is largely based on a previous model for saturated esters. Detailed kinetic modeling describes how these differences are related to molecular structures, leading to unique fuel destruction pathways for each of these isomers. Meanwhile, the effect of carbon carbon double bonds on the combustion chemistry of small fatty acid esters is addressed.  相似文献   

18.
The relative importance of formation pathways for benzene, an important precursor to soot formation, was determined from the simulation of 22 premixed flames for a wide range of equivalence ratios (1.0-3.06), fuels (C1-C12), and pressures (20-760 torr). The maximum benzene concentrations in 15 out of these flames were well reproduced within 30% of the experimental data. Fuel structural properties were found to be critical for benzene production. Cyclohexanes and C3 and C4 fuels were found to be among the most productive in benzene formation; and long-chain normal paraffins produce the least amount of benzene. Other properties, such as equivalence ratio and combustion temperatures, were also found to be important in determining the amount of benzene produced in flames. Reaction pathways for benzene formation were examined critically in four premixed flames of structurally different fuels of acetylene, n-decane, butadiene, and cyclohexane. Reactions involving precursors, such as C3 and C4 species, were examined. Combination reactions of C3 species were identified to be the major benzene formation routes with the exception of the cyclohexane flame, in which benzene is formed exclusively from cascading fuel dehydrogenation via cyclohexene and cyclohexadiene intermediates. Acetylene addition makes a minor contribution to benzene formation, except in the butadiene flame where C4H5 radicals are produced directly from the fuel, and in the n-decane flame where C4H5 radicals are produced from large alkyl radical decomposition and H atom abstraction from the resulting large olefins.  相似文献   

19.
Experimental and numerical study of premixed, lean ethylene flames   总被引:1,自引:0,他引:1  
Ethylene is a key intermediate in the combustion mechanisms of most practical fuels. It plays also an important role in the formation of aromatic hydrocarbons and soot particules. The latter has motivated many experimental and numerical studies carried out on rich ethylene-air mixtures. Less studies have been devoted to lean mixtures, and the development of strategies based on lean, premixed flames to reduce soot and NOx production requires additional experimental data in lean conditions. In this work, the chemical structure of lean premixed ethylene-oxygen-nitrogen flames stabilized on a flat-flame burner at atmospheric pressure was determined experimentally. The species mole fraction profiles were also computed by the Premix code (Chemkin II version) and four detailed reaction mechanisms. A very good agreement was observed for the main flame properties: reactants consumption, final products (CO2, H2O) and the main intermediates: CO and H2. Marked differences occurred in the prediction of active intermediate species present in small concentrations. Pathways analyses were performed to identify the origins of these discrepancies. It was shown that the same reactions were involved in the four mechanisms to describe the consumption of ethylene, but with marked differences in their relative importance. C2H3 and CH2HCO are the main radicals formed in this first step and their consumption increases the differences between the mechanisms either by the use of different kinetic data for common reactions or by differences in the nature of the consumption reactions.  相似文献   

20.
The photoionization and dissociation photoionization of toluene have been studied using quantum chemistry methods.The geometries and frequencies of the reactants,transition states and products have been performed at B3LYP/6-311++G (d,p) level,and single-point energy calculations for all the stationary points were carried out at DFT calculations of the optimized structures with the G3B3 level.The ionization energies of toluene and the appearance energies for major fragment ions,C7H7+,C6H5+,C5H6+,C5H5+,are determined to be 8.90,11.15 or 11.03,12.72,13.69,16.28 eV,respectively,which are all in good agreement with published experimental data.With the help of available published experimental data and theoretical results,four dissociative photoionization channels have been proposed:C7H7++H,C6H5++CH3,C5H6++C2H2,C5H5++C2H2+H.Transition structures and intermediates for those isomerization processes are determined in this work.Especially,the structures of C5H6+ and C5H5+ produced by dissociative photoionization of toluene have been defined as chain structure in this work with theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号