首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3033篇
  免费   120篇
  国内免费   254篇
化学   2461篇
晶体学   13篇
力学   14篇
综合类   5篇
数学   4篇
物理学   910篇
  2023年   77篇
  2022年   27篇
  2021年   45篇
  2020年   47篇
  2019年   45篇
  2018年   33篇
  2017年   36篇
  2016年   79篇
  2015年   57篇
  2014年   75篇
  2013年   184篇
  2012年   199篇
  2011年   222篇
  2010年   138篇
  2009年   210篇
  2008年   191篇
  2007年   196篇
  2006年   226篇
  2005年   187篇
  2004年   145篇
  2003年   155篇
  2002年   91篇
  2001年   81篇
  2000年   67篇
  1999年   60篇
  1998年   72篇
  1997年   56篇
  1996年   43篇
  1995年   36篇
  1994年   41篇
  1993年   44篇
  1992年   26篇
  1991年   44篇
  1990年   33篇
  1989年   28篇
  1988年   18篇
  1987年   18篇
  1986年   8篇
  1985年   6篇
  1984年   9篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   6篇
  1979年   11篇
  1978年   4篇
  1976年   5篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
排序方式: 共有3407条查询结果,搜索用时 15 毫秒
1.
Ion funnel is a new-style ion guider which can reduce spatial divergence and energy dispersity of the transmission ions by using radio frequency (RF) electric field to confine the ions radially and the direct current (DC) axial electric field to move the ions toward the exit, and thus it can greatly increase the ion transmission efficiency and improve the sensitivity of the mass spectrometry. Since ion funnel was invented in 1997, it has attracted a close attention of mass spectrometry scientists all over the world. Ion funnel has been used in various kinds of mass spectrometry, and built a bridge with high efficiency ion transmission between low vacuum ionization source and high vacuum mass analyzer. In this paper, the principle, technology development, and application progress of ion funnel are reviewed, and the future prospects are prospected.  相似文献   
2.
《Comptes Rendus Chimie》2015,18(5):474-477
A series of ternary CuMOR–SiO2 mixed materials were prepared by two synthesis approaches (CuMOR1–y–SiO2 and CuMOR2–y–SiO2). Extensive characterization was done for both series and some selected materials were tested in CO catalytic oxidation and NO reduction. The presence of CuMOR and SiO2 segregated phases was observed in both series by XRD, suggesting that silica formation was not inhibited by the mordenite (MOR) presence. UV–Vis results exhibited that Cu ion exchange was successfully done for CuMOR1–y–SiO2 series. In the CuMOR2–y–SiO2 series, the amount of copper was below the sensitivity limit of EDS analysis. CuMOR1–50%–SiO2 catalyst resulted with higher specific surface area and catalytic activity. A possible relation between reduction temperature, the increase in Cu plasmon excitation, and catalytic activity was observed.  相似文献   
3.
4.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   
5.
6.
Lithium ions have been applied in the clinic in the treatment of psychiatric disorders. In this work, we report artificial supramolecular lithium channels composed of pore-containing small aromatic molecules. By adjusting the lumen size and coordination numbers, we found that one of the supramolecular channels developed shows unprecedented transmembrane transport of exogenous lithium ions with a Li+/Na+ selectivity ratio of 23.0, which is in the same level of that of natural Na+ channels. Furthermore, four coordination sites inside channels are found to be the basic requirement for ion transport function. Importantly, this artificial lithium channel displays very low transport of physiological Na+, K+, Mg2+, and Ca2+ ions. This highly selective Li+ channel may become an important tool for studying the physiological role of intracellular lithium ions, especially in the treatment of psychiatric disorders.  相似文献   
7.
Tuning the coordination environments of metal single atoms (M1) in single-atom catalysts has shown large impacts on catalytic activity and stability but often barely on selectivity in thermocatalysis. Here, we report that simultaneously regulating both Rh1 atoms and ZrO2 support with alkali ions (e.g., Na) enables efficient switching of the reaction products from nearly 100 % CH4 to above 99 % CO in CO2 hydrogenation in a wide temperature range (240–440 °C) along with a record high activity of 9.4 molCO gRh−1 h−1 at 300 °C and long-term stability. In situ spectroscopic characterization and theoretical calculations unveil that alkali ions on ZrO2 change the surface intermediate from formate to carboxy species during CO2 activation, thus leading to exclusive CO formation. Meanwhile, alkali ions also reinforce the electronic Rh1-support interactions, endowing the Rh1 atoms more electron deficient, which improves the stability against sintering and inhibits deep hydrogenation of CO to CH4.  相似文献   
8.
Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.  相似文献   
9.
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries.  相似文献   
10.
While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号