首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   10篇
  国内免费   3篇
化学   9篇
力学   194篇
数学   178篇
物理学   24篇
  2023年   1篇
  2022年   6篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   9篇
  2017年   17篇
  2016年   21篇
  2015年   12篇
  2014年   28篇
  2013年   58篇
  2012年   2篇
  2011年   28篇
  2010年   12篇
  2009年   23篇
  2008年   44篇
  2007年   37篇
  2006年   17篇
  2005年   14篇
  2004年   12篇
  2003年   10篇
  2002年   13篇
  2001年   5篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
排序方式: 共有405条查询结果,搜索用时 46 毫秒
1.
The steady-state two-phase flow non-linear equation is considered in the case when one of phases has low effective permeability in some periodic set, while on the complementary set it is high; the second phase has no contrast of permeabilities in different zones. A homogenization procedure gives the homogenized model with macroscopic effective permeability of the second phase depending on the gradient and on the second order derivatives of the macroscopic pressure of the first phase. This effect cannot be obtained by classical (one small parameter) homogenization. To cite this article: G.P. Panasenko, G. Virnovsky, C. R. Mecanique 331 (2003).  相似文献   
2.
Cellulose microfibrils have been prepared from banana rachis using a combination of chemical and mechanical treatments. The morphology and structure of the samples were characterized using transmission electron microscopy, atomic force microscopy, and X-ray diffraction. Fourier-transformed infrared spectroscopy (FTIR) was used to characterize the chemical modifications of the samples after each treatment. Suspensions of bundled or individualized 5-nm-wide microfibrils were obtained after homogenization (PH) whereas an organosolv (PO) treatment resulted in shorter aggregates of parallel cellulose microcrystallites. The sharper rings in the X-ray diffraction pattern of the PO-treated sample suggest a higher crystallinity due to a more efficient removal of hemicelluloses and dissolution of amorphous zones by the acid treatment. Both microfibrils and microcrystals prepared by both methods can be used as reinforcing filler in nanocomposite materials.  相似文献   
3.
Tower buildings can be very sensitive to dynamic actions and their dynamic analysis is usually carried out numerically through sophisticated finite element models. In this paper, an equivalent nonlinear one-dimensional shear–shear–torsional beam model immersed in a three-dimensional space is introduced to reproduce, in an approximate way, the dynamic behavior of tower buildings. It represents an extension of a linear beam model recently introduced by the authors, accounting for nonlinearities generated by the stretching of the columns. The constitutive law of the beam is identified from a discrete model of a 3D-frame, via a homogenization process, which accounts for the rotation of the floors around the tower axis. The macroscopic shear strain in the equivalent beam is produced by the bending of columns, accompanied by negligible rotation of the floors. A coupled nonlinear shear–torsional mechanical model is thus obtained. The coupling between shear and torsion is related to a non-symmetric layout of the columns, while mechanical nonlinearities are proportional to the slenderness of the columns. The model can be used for the analysis of the response of tower buildings to any kind of dynamic and static excitation. A first application is here presented to investigate the effect of mechanical and aerodynamic coupling on the critical galloping conditions and on the postcritical behavior of tower buildings, based on a quasi-steady model of aerodynamic forces.  相似文献   
4.
In this paper, we investigate the periodic homogenization of nonlinear parabolic equation arising from heat exchange in composite material problems. This problem, defined in periodical domain, is nonlinear at the interface. This nonlinearity models the heat radiation on the interface, which constitutes the transmission boundary conditions, between the two components of the material. The main challenge is, first, to show the well-posedness of the microscopic problem using the topological degree of Leray–Schauder tools. Then, we apply the two scale convergence to identify the equivalent macroscopic model using homogenization techniques. Finally, in order to confirm the efficiency of the homogenization process, we present some numerical results obtained via finite element approximation.  相似文献   
5.
A fairly large family of asymptotic elastodynamic homogenization methods is shown to be derivable from Willis exact elastodynamic homogenization theory for periodic media under appropriate approximation assumptions about, for example, frequencies, wavelengths and phase contrast. In light of this result, two long-wavelength and low-frequency asymptotic elastodynamic approaches are carefully analyzed and compared in connection with higher-order strain-gradient media. In particular, these approaches are proved to be unable to capture, at least in the one-dimensional setting, the optical branches of the dispersion curve. As an example, a two-phase string is thoroughly studied so as to illustrate the main results of the present work.  相似文献   
6.
Cerium doped gadolinium gallium aluminum garnet (GGAG:Ce) ceramic precursors have been synthesized with an ultrasonic chemical co-precipitation method (UCC) and for comparison with a traditional chemical co-precipitation method (TCC). The effect of ultra-sonication on the morphology of powders and the transmittance of GGAG:Ce ceramics are studied. The results indicate that the UCC method can effectively improve the homogenization and sinterability of GGAG:Ce powders, which contribute to obtain high transparent GGAG ceramic with the highest transmittance of 81%.  相似文献   
7.
In this article, we study the homogenization of the family of parabolic equations over periodically perforated domains
. Here, ΩɛS ɛ is a periodically perforated domain. We obtain the homogenized equation and corrector results. The homogenization of the equations on a fixed domain was studied by the authors [15]. The homogenization for a fixed domain and has been done by Jian [11].  相似文献   
8.
It is by now well established that loading conditions with sufficiently large triaxialities can induce the sudden appearance of internal cavities within elastomeric (and other soft) solids. The occurrence of such instabilities, commonly referred to as cavitation, can be attributed to the growth of pre-existing defects into finite sizes. This paper introduces a new theory to study the phenomenon of cavitation in soft solids that: (i) allows to consider general 3D loading conditions with arbitrary triaxiality, (ii) applies to large (including compressible and anisotropic) classes of nonlinear elastic solids, and (iii) incorporates direct information on the initial shape, spatial distribution, and mechanical properties of the underlying defects at which cavitation can initiate. The basic idea is to first cast cavitation in elastomeric solids as a homogenization problem of nonlinear elastic materials containing random distributions of zero-volume cavities, or defects. This problem is then addressed by means of a novel iterated homogenization procedure, which allows to construct solutions for a specific, yet fairly general, class of defects. These include solutions for the change in size of the defects as a function of the applied loading conditions, from which the onset of cavitation — corresponding to the event when the initially infinitesimal defects suddenly grown into finite sizes — can be readily determined. In spite of the generality of the proposed approach, the relevant calculations amount to solving tractable Hamilton-Jacobi equations, in which the initial size of the defects plays the role of “time” and the applied load plays the role of “space”. When specialized to the case of hydrostatic loading conditions, isotropic solids, and defects that are vacuous and isotropically distributed, the proposed theory recovers the classical result of Ball (1982) for radially symmetric cavitation. The nature and implications of this remarkable connection are discussed in detail.  相似文献   
9.
Multi-scale computational homogenization: Trends and challenges   总被引:5,自引:0,他引:5  
In the past decades, considerable progress had been made in bridging the mechanics of materials to other disciplines, e.g. downscaling to the field of materials science or upscaling to the field of structural engineering. Within this wide context, this paper reviews the state-of-the-art of a particular, yet powerful, method, i.e. computational homogenization. The paper discusses the main trends since the early developments of this approach up to the ongoing contributions and upcoming challenges in the field.  相似文献   
10.
It is well known under the name of ‘periodic homogenization’ that, under a centering condition of the drift, a periodic diffusion process on Rd converges, under diffusive rescaling, to a d-dimensional Brownian motion. Existing proofs of this result all rely on uniform ellipticity or hypoellipticity assumptions on the diffusion. In this paper, we considerably weaken these assumptions in order to allow for the diffusion coefficient to even vanish on an open set. As a consequence, it is no longer the case that the effective diffusivity matrix is necessarily non-degenerate. It turns out that, provided that some very weak regularity conditions are met, the range of the effective diffusivity matrix can be read off the shape of the support of the invariant measure for the periodic diffusion. In particular, this gives some easily verifiable conditions for the effective diffusivity matrix to be of full rank. We also discuss the application of our results to the homogenization of a class of elliptic and parabolic PDEs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号