首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72929篇
  免费   11727篇
  国内免费   2492篇
化学   62979篇
晶体学   971篇
力学   2031篇
综合类   67篇
数学   11949篇
物理学   9151篇
  2024年   7篇
  2023年   159篇
  2022年   208篇
  2021年   468篇
  2020年   926篇
  2019年   2724篇
  2018年   2568篇
  2017年   2956篇
  2016年   3225篇
  2015年   5548篇
  2014年   5532篇
  2013年   7481篇
  2012年   5819篇
  2011年   6292篇
  2010年   4956篇
  2009年   4856篇
  2008年   5336篇
  2007年   4512篇
  2006年   4049篇
  2005年   3824篇
  2004年   3124篇
  2003年   2798篇
  2002年   3472篇
  2001年   1748篇
  2000年   1617篇
  1999年   824篇
  1998年   213篇
  1997年   201篇
  1996年   181篇
  1995年   166篇
  1994年   186篇
  1993年   172篇
  1992年   147篇
  1991年   109篇
  1990年   88篇
  1989年   85篇
  1988年   58篇
  1987年   57篇
  1986年   55篇
  1985年   70篇
  1984年   59篇
  1983年   38篇
  1982年   54篇
  1981年   38篇
  1980年   40篇
  1979年   20篇
  1978年   30篇
  1977年   18篇
  1976年   17篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 881 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
Like the lower central series of a nilpotent group, filters generalize the connection between nilpotent groups and graded Lie rings. However, unlike the case with the lower central series, the associated graded Lie ring may share few features with the original group: e.g. the associated Lie ring can be trivial or arbitrarily large. We determine properties of filters such that every isomorphism between groups is induced by an isomorphism between graded Lie rings.  相似文献   
3.
In the periodic table the position of each atom follows the ‘aufbau’ principle of the individual electron shells. The resulting intrinsic periodicity of atomic properties determines the overall behavior of atoms in two-dimensional (2D) bonding and structure formation. Insight into the type and strength of bonding is the key in the discovery of innovative 2D materials. The primary features of 2D bonding and the ensuing monolayer structures of the main-group II–VI elements result from the number of valence electrons and the change of atom size, which determine the type of hybridization. The results reveal the tight connection between strength of bonding and bond length in 2D networks. The predictive power of the periodic table reveals general rules of bonding, the bonding-structure relationship, and allows an assessment of published data of 2D materials.  相似文献   
4.
We study the existence of a time‐periodic solution with pointwise decay properties to the Navier–Stokes equation in the whole space. We show that if the time‐periodic external force is sufficiently small in an appropriate sense, then there exists a time‐periodic solution { u , p } of the Navier–Stokes equation such that | ? j u ( t , x ) | = O ( | x | 1 ? n ? j ) and | ? j p ( t , x ) | = O ( | x | ? n ? j ) ( j = 0 , 1 , ) uniformly in t R as | x | . Our solution decays faster than the time‐periodic Stokes fundamental solution and the faster decay of its spatial derivatives of higher order is also described.  相似文献   
5.
6.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
7.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
8.
9.
The growth-fragmentation equation describes a system of growing and dividing particles, and arises in models of cell division, protein polymerisation and even telecommunications protocols. Several important questions about the equation concern the asymptotic behaviour of solutions at large times: at what rate do they converge to zero or infinity, and what does the asymptotic profile of the solutions look like? Does the rescaled solution converge to its asymptotic profile at an exponential speed? These questions have traditionally been studied using analytic techniques such as entropy methods or splitting of operators. In this work, we present a probabilistic approach: we use a Feynman–Kac formula to relate the solution of the growth-fragmentation equation to the semigroup of a Markov process, and characterise the rate of decay or growth in terms of this process. We then identify the Malthus exponent and the asymptotic profile in terms of a related Markov process, and give a spectral interpretation in terms of the growth-fragmentation operator and its dual.  相似文献   
10.
Ronald Pethig 《Electrophoresis》2019,40(18-19):2575-2583
Dielectrophoresis (DEP) studies have progressed from the microscopic scale of cells and bacteria, through the mesoscale of virions to the molecular scale of DNA and proteins. The Clausius‐Mossotti function, based on macroscopic electrostatics, is invariably employed in the analyses of all these studies. The limitations of this practice are explored, with the conclusion that it should be abandoned for the DEP study of proteins and modified for native DNA. For macromolecular samples in general, a DEP theory that incorporates molecular‐scale interactions and the influence of permanent dipoles is more appropriate. Experimental ways to test these conclusions are proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号