首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   9篇
  国内免费   2篇
化学   238篇
晶体学   1篇
力学   3篇
综合类   1篇
数学   20篇
物理学   60篇
  2023年   5篇
  2022年   2篇
  2021年   15篇
  2020年   11篇
  2019年   14篇
  2018年   15篇
  2017年   12篇
  2016年   20篇
  2015年   5篇
  2014年   11篇
  2013年   22篇
  2012年   26篇
  2011年   32篇
  2010年   20篇
  2009年   8篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   8篇
  2004年   9篇
  2003年   12篇
  2002年   8篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1991年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1956年   1篇
  1955年   1篇
  1903年   1篇
排序方式: 共有323条查询结果,搜索用时 31 毫秒
1.
2.
中国剪纸的设计极具挑战性, 要求画面简洁、直观, 还需要表达特定的文化内涵, 且整张剪纸须整体连通。提出了一种基于图像的二维剪纸自动生成方法, 能够将任意数码照片自动转化为剪纸图形。首先,利用图像分割方法建立区域连接图; 接着, 基于该连接图对颜色、边界对比度和区域连通性进行数学建模, 并获得优化目标函数; 最后, 通过模拟退火算法求解目标方程, 自动生成保持图像内容的剪纸图形。还开发了连通性后处理和区域指定等用户交互工具, 允许用户在自动生成的剪纸图形中方便地加入个人设计。实验表明, 所生成的剪纸图形画面简洁、整体连通。 本方法在降低剪纸设计难度的同时还可满足个性化的设计需求, 有助于传播和传承我国的民间剪纸艺术。  相似文献   
3.
Heavy metal ions are harmful to aquatic life and humans owing to their high toxicity and non‐biodegradability, so their removal from wastewater is an important task. Therefore, this work focuses on designing suitable, simple and economical nanosensors to detect and remove these metal ions with high selectivity and sensitivity. Based on this idea, different types of mesoporous materials such as hexagonal SBA‐15, cubic SBA‐16 and spherical MCM‐41, their chloro‐functionalized derivatives, as well as 4‐(4‐nitro‐phenylazo)‐naphthalen‐1‐ol (NPAN) azo dye have been synthesized, with the aim of designing some optical nanosensors for metal ions sensing applications. The mentioned azo dye has been anchored into the chloro‐functionalized mesoporous materials. The designed nanosensors were characterized using scanning and transmission electron microscopy as well as Fourier transform infrared and UV–visible spectral analysis, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analyses. Their optical sensing to various toxic metal ions such as Cd (II), Hg (II), Mn (II), Fe (II), Zn (II) and Pb (II) at different values of pH (1.1, 4.9, 7 and 12) was investigated. The optimization of experimental conditions, including the effect of pH and metal ion concentration, was examined. The experimental results showed that the solution pH had a major impact on metal ion detection. The optical nanosensors respond well to the tested metal ions, as reflected by the enhancement in both absorption and emission spectra upon adding different concentrations of the metal salts and were fully reversible on adding ethylene diamine tetra acetic acid or citric acid to the formed complexes. High values of the binding constants for the designed nanosensors were observed at pHs 7 and 12, confirming the strong chelation of different metals to the nanosensor at these pHs. Also, high binding constants and sensitivity were observed for NPAN‐MCM‐41 as a nanosensor to detect the different metal ions. From the obtained results, we succeeded in transforming the harmful azo dye into an environmentally friendly form via designing of the optical nanosensors used to detect toxic metal ions in wastewater with high sensitivity.  相似文献   
4.
Capparis spinosa L. is a perennial plant typical of the Mediterranean flora and a multipurpose plant used for curing various human ailments. Quaternary ammonium compounds (QACs), as constituents of Capparaceae, play important roles in protecting against abiotic stress. Aim of this work was to determine QACs in root and leaves of caper from two proveniences. The presence of stachydrine, choline, glycine betaine and homo-stachydrine has been confirmed by high resolution MS, while 1H NMR was applied to quantify the main QACs in the aqueous extracts. Stachydrine was quantified at 20.2 mg/g and 32.3 mg/g on dry leaves from South of Italy and Saudi Arabia, respectively, while a minor content was in dry roots (from 10.4 to 12.5 mg/g). Choline was considerably lower both in leaves and roots (from 0.3 to 1.2 mg/g). To our knowledge, this is the first report on the determination of QACs both in root and leaves of C. spinosa.  相似文献   
5.
6.

Background

The carbapenem subclass of β-lactams is among the most potent antibiotics available today. Emerging evidence shows that, unlike other subclasses of β-lactams, carbapenems bind to and inhibit non-classical transpeptidases (L,D-transpeptidases) that generate 3 → 3 linkages in bacterial peptidoglycan. The carbapenems biapenem and tebipenem exhibit therapeutically valuable potencies against Mycobacterium tuberculosis (Mtb).

Results

Here, we report the X-ray crystal structures of Mtb L,D-transpeptidase-2 (LdtMt2) complexed with biapenem or tebipenem. Despite significant variations in carbapenem sulfur side chains, biapenem and tebipenem ultimately form an identical adduct that docks to the outer cavity of LdtMt2. We propose that this common adduct is an enzyme catalyzed decomposition of the carbapenem adduct by a mechanism similar to S-conjugate elimination by β-lyases.

Conclusion

The results presented here demonstrate biapenem and tebipenem bind to the outer cavity of LdtMt2, covalently inactivate the enzyme, and subsequently degrade via an S-conjugate elimination mechanism. We discuss structure based drug design based on the findings and propose that the S-conjugate elimination can be leveraged to design novel agents to deliver and locally release antimicrobial factors to act synergistically with the carbapenem carrier.
  相似文献   
7.
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.  相似文献   
8.
Beta glucan (β-glucan) has promising bioactive properties. Consequently, the use of β-glucan as a food additive is favored with the dual-purpose potential of increasing the fiber content of food products and enhancing their health properties. Our aim was to evaluate the biological activity of β-glucan (antimicrobial, antitoxic, immunostimulatory, and anticancer) extracted from Saccharomyces cerevisiae using a modified acid-base extraction method. The results demonstrated that a modified acid-base extraction method gives a higher biological efficacy of β-glucan than in the water extraction method. Using 0.5 mg dry weight of acid-base extracted β-glucan (AB extracted) not only succeeded in removing 100% of aflatoxins, but also had a promising antimicrobial activity against multidrug-resistant bacteria, fungi, and yeast, with minimum inhibitory concentrations (MIC) of 0.39 and 0.19 mg/mL in the case of resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. In addition, AB extract exhibited a positive immunomodulatory effect, mediated through the high induction of TNFα, IL-6, IFN-γ, and IL-2. Moreover, AB extract showed a greater anticancer effect against A549, MDA-MB-232, and HepG-2 cells compared to WI-38 cells, at high concentrations. By studying the cell death mechanism using flow-cytometry, AB extract was shown to induce apoptotic cell death at higher concentrations, as in the case of MDA-MB-231 and HePG-2 cells. In conclusion, the use of a modified AB for β-glucan from Saccharomyces cerevisiae exerted a promising antimicrobial, immunomodulatory efficacy, and anti-cancer potential. Future research should focus on evaluating β-glucan in various biological systems and elucidating the underlying mechanism of action.  相似文献   
9.
Computational drug design is increasingly becoming important with new and unforeseen diseases like COVID-19. In this study, we present a new computational de novo drug design and repurposing method and applied it to find plausible drug candidates for the receptor binding domain (RBD) of SARS-CoV-2 (COVID-19). Our study comprises three steps: atom-by-atom generation of new molecules around a receptor, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom, explicit-water well-tempered metadynamics free energy calculations. By choosing the receptor binding domain of the viral spike protein, we showed that some of our new molecules and some of the repurposable drugs have stronger binding to RBD than hACE2. To validate our approach, we also calculated the free energy of hACE2 and RBD, and found it to be in an excellent agreement with experiments. These pool of drugs will allow strategic repurposing against COVID-19 for a particular prevailing conditions.  相似文献   
10.
Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号