首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   924篇
  免费   15篇
  国内免费   218篇
化学   1048篇
晶体学   1篇
力学   6篇
数学   2篇
物理学   100篇
  2023年   10篇
  2022年   31篇
  2021年   19篇
  2020年   27篇
  2019年   14篇
  2018年   8篇
  2017年   23篇
  2016年   37篇
  2015年   29篇
  2014年   35篇
  2013年   61篇
  2012年   64篇
  2011年   63篇
  2010年   48篇
  2009年   92篇
  2008年   92篇
  2007年   100篇
  2006年   83篇
  2005年   54篇
  2004年   51篇
  2003年   38篇
  2002年   30篇
  2001年   22篇
  2000年   24篇
  1999年   23篇
  1998年   20篇
  1997年   17篇
  1996年   13篇
  1995年   6篇
  1994年   8篇
  1993年   3篇
  1992年   6篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
排序方式: 共有1157条查询结果,搜索用时 78 毫秒
1.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
2.
For the degradation of chitosan, a novel physical method of self-resonating cavitation with strong cavitation effects was investigated in this paper. The effects of initial concentration, pH, temperature, inlet pressure and cavitation time on the degradation efficiency of chitosan were evaluated. It was found that the degradation efficiency was positively correlated with temperature and cavitation time, but was negatively correlated with the solution concentration. The degradation efficiency was maximized at pH of 4.4 and inlet pressure of 0.4 MPa. Under the experimental conditions, the intrinsic viscosity of chitosan solution was reduced by 92.2%, which was twice as high as the degradation efficiency where a Venturi tube cavitator was used. The viscosity-average molecular weights of initial and degraded chitosan were 651 and 104 kD, respectively. The deacetylation degree of chitosan slightly decreased from 89.34% to 88.05%. Structures and polydispersity of initial and degraded chitosan were measured by Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray diffraction (XRD) and gel permeation chromatography (GPC). The results showed that the degradation process did not change the natural structure of chitosan. XRD peaks of the original chitosan were observed at 2θ of 9.59° and 20.00°, and the one at 2θ of 20.00° was obviously weakened after the degradation process, which indicated that the crystallinity of chitosan decreased significantly after the degradation. The polydispersity index of chitosan samples decreased from 3.17 to 2.75, indicating that the molecular-weight distribution of products after the degradation was more concentrated. The results proved that self-resonating cavitation prompted the degradation of chitosan and could reduce the polydispersity of the products for the production of oligochitosan with homogeneous molecular weights.  相似文献   
3.
A multiwalled carbon nanotubes (CNT)‐chitosan (CHIT) modified pencil graphite electrode (CNT‐CHIT/PGE) was developed for the first time herein for electrochemical monitoring of the interaction of an anticancer drug, mitomycin C (MC) and DNA. The characterization of unmodified PGE, CHIT/PGE, CNT/PGE and CHIT‐CNT/PGE were performed by scanning electron microscopy and cyclic voltammetry techniques. The oxidation signals of MC and guanine were measured before and after interaction at the surface of CNT‐CHIT/PGEs using differential pulse voltammetry. Electrochemical impedance spectroscopy technique was also successfully utilized for monitoring of the interaction process at the surface of CNT‐CHIT/PGEs in different interaction times.  相似文献   
4.
用硫辛酸修饰壳聚糖并制备纳米粒子,用催化量的二硫苏糖醇(DTT)处理得到二硫键交联的壳聚糖纳米粒子.二硫键结构的引入不仅使纳米粒子具有还原相应性,而且还引入疏水基团,疏水性的抗癌药阿霉素和荧光探针荧光素通过疏水作用负载于纳米粒子内.二硫交联结构的形成使负载的阿霉素在没有还原剂的环境中(模拟血液的低还原环境)的释放速率大大减慢,而在10 mmoL/L DTT(模拟细胞内高浓度谷胱甘肽环境)存在下,交联纳米粒子负载的阿霉素快速释放,这可归因于DTT还原二硫键使交联结构破坏.流式细胞实验表明,当介质的pH值由7.4(血液和正常组织pH值)降低到7.0、6.8和6.5(模拟肿瘤组织的微酸性环境)时,交联纳米粒子进入细胞的倾向逐渐增加,这是由于在中性环境中纳米粒子表面是电中性和亲水性的,而在酸性介质中,氨基的质子化使纳米粒子表面带正电荷,zeta电位数据证实这种推断.细胞毒性实验表明,在pH6.5的环境中负载阿霉素的交联纳米粒子对HeLa细胞的毒性大于在pH 7.4时的毒性.  相似文献   
5.
In the present work, an attempt has been made to prepare a new natural biopolymer blend electrolyte of carboxymethyl cellulose/chitosan impregnated with NH4NO3 by the solution casting technique. The conductivity for the system was measured by impedance spectroscopy. The incorporation of 40 wt.% NH4NO3 optimized the ambient temperature conductivity of the electrolyte up to 1.03 × 10?5 S cm?1. All electrolytes were found to follow the Arrhenius relationship. Dielectric studies confirmed that the electrolytes obey non-Debye behavior. The temperature dependence of the power law exponent s for the highest conducting film can be represented by the correlated barrier hopping model.  相似文献   
6.
A fast and facile approach to synthesize highly nitrogen (N)-doped carbon dots (N-CDs) by microwave-assisted pyrolysis of chitosan, acetic acid and 1,2-ethylenediamine as the carbon source, condensation agent and N-dopant, respectively, is reported. The obtained N-CDs are fully characterized by elemental analysis, transmission electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction pattern, X-ray photoelectron spectroscopy, UV–vis absorption, and photoluminescence spectroscopy. Doping N heteroatoms benefits the generation of N-CDs with stronger fluorescence emission. As the emission of N-CDs is efficiently quenched by Fe3+, the as-prepared N-CDs are employed as a highly sensitive and selective probe for Fe3+ detection. The detection limit can reach as low as 10 ppb, and the linear range is 0.010–1.8 ppm Fe3+. The as-synthesized N-CDs have been successfully applied for cell imaging and detecting Fe3+ in biosystem.  相似文献   
7.
Diabetic wounds (DWs) are characterized by prolonged inflammation, which poses a significant challenge for clinicians and researchers to promote healing. In this study, we fabricate L-Glutamic acid (LGA) loaded collagen/chitosan (COL-CS) composite scaffold for the accelerated healing of DW. The characterization outcomes of the composite scaffold revealed that a crosslinked scaffold holds optimum porosity, low matrix degradation, and sustained drug release in contrast to a non-crosslinked scaffold. In vitro, LGA composite scaffolds have not exhibited any toxicity on 3T3L1 cell lines. In vivo, the LGA composite scaffold has shown significantly (p < 0.001), higher rates of wound contraction than those in control and COL-CS scaffold treated groups. In addition, MMP-9 levels were also significantly reduced in LGA composite scaffold-treated group compared with those in the control and COL-CS scaffold treated group. Thus, the LGA composite scaffold may serve as a promising therapy in DW due to its unique modulatory effect on inflammatory biomarker MMP-9.  相似文献   
8.
Adsorptive separation of C2H6 from C2H4 by adsorbents is an energy-efficient and promising method to boost the polymer grades C2H4 production. However, that C2H6 and C2H4 display very similar physical properties, making their separation extremely challenging. In this work, by regulating the pore environment in a family of chitosan-based carbon materials (C-CTS-1, C-CTS-2, C-CTS-4, and C-CTS-6)- we target ultrahigh C2H6 uptake and C2H6/C2H4 separation, which exceeds most benchmark carbon materials. Explicitly, the C2H6 uptake of C-CTS-2 (166 cm3/g at 100 kPa and 298 K) has the second-highest adsorption capacity among all the porous materials. In addition, C-CTS-2 gives C2H6/C2H4 selectivity of 1.75 toward a 1:15 mixture of C2H6/C2H4. Notably, the adsorption enthalpies for C2H6 in C-CTS-2 are low (21.3 kJ/mol), which will facilitate regeneration in mild conditions. Furthermore, C2H6/C2H4 separation performance was confirmed by binary breakthrough experiments. Under different ethane/ethylene ratios, C-CTS-X extracts a low ethane concentration from an ethane/ethylene mixture and produces high-purity C2H4 in one step. Spectroscopic measurement and diffraction analysis provide critical insight into the adsorption/separation mechanism. The nitrogen functional groups on the surface play a vital role in improving C2H6/C2H4 selectivity, and the adsorption capacities depend on the pore size and micropore volume. Moreover, these robust porous materials exhibit outstanding stability (up to 800 °C) and can be easily prepared on a large scale (kg) at a low cost (~$26 per kg), which is very significant for potential industrial applications.  相似文献   
9.
A chitosan-based biocompatible self-healing hydrogel has been facilely prepared and used for bioapplications.  相似文献   
10.
制备了甘氨酸-壳聚糖复合膜修饰玻碳电极(Gly-CTS/GCE),研究了抗坏血酸(AA)和尿酸(UA)在该修饰电极上的电化学行为。结果表明在pH=5.59的磷酸盐缓冲溶液中,AA、UA在Gly-CTS/GCE上均产生灵敏的不可逆氧化峰,其峰电流与浓度在一定范围内呈良好的线性关系。对AA和UA混合溶液平行测定7次,相对标准偏差分别为4.6%、2.9%,表明该电极重现性和稳定性良好。AA、UA在Gly-CTS/GCE电极上的氧化峰峰电位相差340mV,据此可实现对二者的同时检测,并可应用于实际样品测定。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号