首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3042篇
  免费   852篇
  国内免费   427篇
化学   618篇
晶体学   70篇
力学   672篇
综合类   95篇
数学   1131篇
物理学   1735篇
  2024年   24篇
  2023年   77篇
  2022年   77篇
  2021年   89篇
  2020年   71篇
  2019年   101篇
  2018年   52篇
  2017年   86篇
  2016年   115篇
  2015年   111篇
  2014年   234篇
  2013年   166篇
  2012年   195篇
  2011年   216篇
  2010年   213篇
  2009年   255篇
  2008年   209篇
  2007年   205篇
  2006年   221篇
  2005年   198篇
  2004年   160篇
  2003年   160篇
  2002年   120篇
  2001年   119篇
  2000年   92篇
  1999年   81篇
  1998年   78篇
  1997年   78篇
  1996年   94篇
  1995年   63篇
  1994年   70篇
  1993年   65篇
  1992年   56篇
  1991年   47篇
  1990年   55篇
  1989年   45篇
  1988年   10篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   3篇
  1980年   1篇
  1959年   1篇
排序方式: 共有4321条查询结果,搜索用时 31 毫秒
1.
研究来源于多元统计分析中的一类矩阵迹函数最小化问题$\min c+ tr(AX)+\sum\limits_{j=1}^{m}tr(B_j X C_jX^{T}),\ \ {\rm s. t.} \ X^TX=I_p,$其中$c$为常数, $A\in R^{p\times n}\ (n\geq p)$, $B_j\in R^{n\times n}, C_j\in R^{p\times p}$为给定系数矩阵. 数值实验表明已有的Majorization算法虽可行, 但收敛速度缓慢且精度不高. 本文从黎曼流形的角度重新研究该问题, 基于Stiefel流形的几何性质, 构造一类黎曼非单调共轭梯度迭代求解算法, 并给出算法收敛性分析.数值实验和数值比较验证所提出的算法对于问题模型是高效可行的.  相似文献   
2.
为了改善GaN HEMT的自热效应,集成高热导率的金刚石衬底有助于增强器件有源区的热量耗散。然而,化学气相淀积(CVD)生长的多晶金刚石(PCD)具有柱状晶粒结构,导致了各向异性的材料热导率,且其热导率值与生长厚度有关。为此,通过建模金刚石生长过程中晶粒尺寸的演变过程,计算了金刚石沿面内和截面方向的热导率。基于该PCD热导率模型,利用计入材料非线性热导率的GaN器件热阻解析模型,计算得到了GaN HEMT沟道温度的波动范围,并分析了其与器件结构(栅长、栅宽、栅间距、衬底厚度)和功耗的依赖关系。最后,通过与有限元(FEM)仿真结果对比,分区域提取了GaN HEMT器件中PCD衬底的有效热导率,分别为260~310 W/(m·K)和1 250~1 450 W/(m·K)。本文的计算为预测金刚石衬底上GaN HEMT器件的沟道温度提供了快速、有效的方法。  相似文献   
3.
为明确裂缝间相互作用对各向异性的影响,本文以Hudson模型为例分析了裂缝密度、裂缝倾角对地震波波场、弹性常数和Thomsen系数的影响规律,然后采用“基质-骨架-流体”组合化的方法进行了裂缝储层微观尺度的建模,并与实际测井资料进行了对比。结果表明该模型适用条件为低裂缝密度储层,二阶模型适用的裂缝密度范围比一阶模型大,但在裂缝密度过大时,二阶模型会出现不收敛的现象,模型便不再适用。裂缝储层纵横波速度随裂缝倾角增大而增大,纵波速度对裂缝倾角更为敏感。另外,在与实际测井曲线对比时,在高裂缝密度地层二阶模型的应用效果明显优于一阶模型,说明了在高裂缝密度储层考虑裂缝间的相互作用的必要性。  相似文献   
4.
介绍了一种条带束流位置监测器(BPM)的设计与仿真方法。在国家同步辐射实验室"太赫兹近场高通量材料物性测试系统"工程项目中,针对波荡器出口处真空室非正交对称性的问题,设计了矩形真空室和跑道形真空室下的两种非正交对称性条带BPM,并与传统的圆形真空室下条带BPM进行对比。基于边界元法,利用MATLAB软件分别对三种真空室下的条带BPM进行建模和仿真。仿真结果表明:相对于传统的圆形真空室下条带BPM,矩形和跑道形真空室下条带BPM灵敏度提高了30%,阻抗匹配误差相对降低了20%,束流位置拟合误差降低了80%。考虑加工精度,矩形真空室下的条带BPM更适用于该工程。  相似文献   
5.
光寻址电位传感器的幅度检测方法易受噪声干扰,灵敏度差,信噪比和精度低,且受调制光源的影响较大,影响检测结果的准确性.为此提出了一种基于正交相位检波的光寻址电位传感器检测方法.该方法是将光寻址电位传感器的输出光电流信号分别与两路正交信号相乘,通过低通滤波提取直流分量并相除,即可得到光寻址电位传感器的输出信号相位信息.与已有的光寻址电位传感器相位检测方法相比,该方法具有算法复杂度低、实时性高的优点.实验研究了调制光源光强对光寻址电位传感器幅度检测和相位检测的影响,对比分析了光寻址电位传感器的传统幅度检测方法与正交相位检波检测方法对pH检测的灵敏度、线性度及信噪比.结果表明,相比于幅度检测方法,调制光源光强对光寻址电位传感器的相位检测影响更小,在频率为10 kHz,pH的范围为1.68~10.01的情况下,相位检测方法比幅度检测方法测得的灵敏度增加了7 mV/pH,精度提高了14.9 mpH,非线性误差减小了0.003%,均方差减少了0.1051×10^-5,信噪比增加了8.2827 dB.该方法特别适用于弱光下的光寻址电位传感器检测.  相似文献   
6.
针对传统红外图像增强算法中细节模糊及过度增强的问题,提出了一种基于Retinex理论与概率非局部均值相结合的红外图像增强方法.首先通过单尺度Retinex方法调整图像中过暗与过亮部分的灰度级;然后利用概率非局部均值对图像进行分解处理得到基本层与细节层,对基本层采用直方图均衡化拉伸对比度,对细节层采用非线性函数进行增强;最后,将不同层次的结果融合得到对比度与细节增强的红外图像.用该方法对多组不同场景的红外图像进行仿真实验,并将其与多种增强方法进行主、客观对比分析,结果表明所提方法在红外图像的细节及对比度增强方面都获得了更好的效果.  相似文献   
7.
将静态超高压高温合成的人造金刚石晶粒利用RTO包埋法制备成适合TEM观察的样品,发现这些金刚石晶粒是由多根细长的纳米多晶棒沿一定取向规则地以捆束状堆叠、聚集而成,而这些纳米多晶棒之间填充了无定型碳.也就是说,人造金刚石晶粒是由结晶碳素和无定型碳组成的.由此,提出并绘制了人造金刚石晶粒的微观结构模型示意图,可用于解释人造金刚石的各向异性及其他宏观性能特征.在以上结论的基础上,笔者认为业界经常提及的“单晶”金刚石称谓可能并不严谨,可能并不是纯粹由结晶金刚石材料组成.  相似文献   
8.
研究L^p(1相似文献   
9.
近年来, 超声导波因其衰减小, 传播距离远和信号覆盖范围广, 成为无损检测领域快速发展的方向之一. 然而, 基于超声导波的高温在线检测和激光超声技术却发展缓慢, 其关键在于热弹耦合波动方程求解难度大、传播与衰减特性研究困难. 作为一种有效的求解方法, 勒让德正交多项式方法已广泛应用于导波传播问题, 但该方法在求解热弹导波传播时存在两个不足, 限制其进一步的发展和应用. 这两个缺陷是: (1)求解过程中大量积分的存在, 致使计算效率低下; (2)仅能处理等热边界条件的热弹导波传播. 针对两项不足之处, 提出一种改进的勒让德正交多项式方法, 以求解分数阶热弹板中的导波传播. 推导求解方法中积分的解析表达式, 以提高计算效率; 引入温度梯度展开式, 发展适合勒让德多项式级数的绝热边界条件处理方法. 与已有文献结果对比表明改进方法的正确性; 与已有方法的计算时间对比说明改进方法的高效性. 最后将改进的方法用于求解分数阶热弹板中的导波传播, 研究分数阶次对频散、衰减曲线和应力、位移、温度分布等的影响.   相似文献   
10.
通过耦合三维微波腔中光子和腔内钇铁石榴石单晶小球中的自旋波量子形成腔-自旋波量子的耦合系统,并通过精确调节系统参数在该实验系统中观测到各向异性奇异点.奇异点对应于非厄米系统中一种特殊状态,在奇异点处,耦合系统的本征值和本征矢均简并,并且往往伴随着非平庸的物理性质.以往大量研究主要集中在各向同性奇异点的范畴,它的特征是在系统参数空间中沿着不同参数坐标趋近该奇异点时具有相同的函数关系.在这篇文章中,主要介绍实验上在腔光子-自旋波量子耦合系统中通过调节系统的耦合强度和腔的耗散衰减系数两条趋近奇异点的路径而实现了各向异性奇异点,具体分别对应于在趋近奇异点时,本征值的虚部的变化与耦合强度和腔的衰减系数的变化会有线性和平方根不同的行为.各向异性奇异点的实现有助于基于腔光子-自旋波量子耦合系统的量子信息处理和精密探测器件的进一步研究.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号