首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   64篇
  国内免费   34篇
化学   102篇
晶体学   6篇
力学   221篇
综合类   1篇
数学   132篇
物理学   378篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   24篇
  2019年   18篇
  2018年   17篇
  2017年   16篇
  2016年   25篇
  2015年   23篇
  2014年   24篇
  2013年   44篇
  2012年   21篇
  2011年   37篇
  2010年   35篇
  2009年   30篇
  2008年   37篇
  2007年   37篇
  2006年   54篇
  2005年   39篇
  2004年   40篇
  2003年   35篇
  2002年   26篇
  2001年   22篇
  2000年   28篇
  1999年   18篇
  1998年   23篇
  1997年   16篇
  1996年   10篇
  1995年   20篇
  1994年   11篇
  1993年   10篇
  1992年   14篇
  1991年   12篇
  1990年   8篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1969年   1篇
  1957年   2篇
排序方式: 共有840条查询结果,搜索用时 15 毫秒
1.
Coupled shape oscillations and translational motion of an incompressible gas bubble in a vibrating liquid container is studied numerically. The bubble oscillation characteristics are mapped based on the bubble Bond number (Bo) and the ratio of the vibration amplitude of the container to the bubble diameter (A/D). At small Bo and A/D, the bubble oscillation is found to be linear with small amplitudes, and at large Bo and A/D, it is nonlinear and chaotic. This chaotic bubble oscillation is similar to those observed in two coupled nonlinear systems, here being the gas inside the bubble and its surrounding liquid. Further increases in the forcing, results in the bubble breakup due to large liquid inertia.  相似文献   
2.
ABSTRACT

The article deals with the study of plane wave propagation in the thermoelastic medium in the presence of voids. The problem is considered in the context of three-phase-lag model of generalized thermoelasticity. There exists three longitudinal waves, namely elastic (E-mode), thermal (T-mode) and volume fraction (V-mode) in addition to transverse waves which get decoupled from the rest of motion and not affected by thermal and volume fraction fields. The fundamental solution of the system of differential equations in case of steady oscillations in terms of the elementary functions has been constructed. The phase velocity and attenuation coefficient of these waves are computed numerically and presented graphically.  相似文献   
3.
Due to the unique magnetic, mechanical and thermal properties, magnetic nanoparticles(MNPs) have comprehensive applications as the contrast and therapeutic agents in biomedical imaging and magnetic hyperthermia. The linear and nonlinear magnetoacoustic responses determined by the magnetic properties of MNPs have attracted more and more attention in biomedical engineering. By considering the relaxation time of MNPs, we derive the formulae of second harmonic magnetoacoustic responses(2H-MARs) for a cylindrical MNP solution model based on the mechanical oscillations of MNPs in magnetoacoustic tomography with magnetic induction(MAT-MI). It is proved that only the second harmonic magnetoacoustic oscillations can be generated by MNPs under an alternating magnetic excitation. The acoustic pressure of the 2H-MAR is proportional to the square of the magnetic field intensity and exhibits a linear increase with the concentration of MNPs. Numerical simulations of the 2H-MAR are confirmed by the experimental measurements for various magnetic field intensities and solution concentrations using a laser vibrometer. The favorable results demonstrate the feasibility of the harmonic measurements without the fundamental interference of the electromagnetic excitation, and suggest a new harmonic imaging strategy of MAT-MI for MNPs with enhanced spatial resolution and improved signal-to-noise ratio in biomedical applications.  相似文献   
4.
The present work is an experimental study of two oscillating rigid plates placed in side-by-side configuration, hinged at their leading edges, subjected to low subsonic flow. This problem is investigated using smoke-wire flow visualization, hot-wire anemometry, and time resolved particle image velocimetry. It is found that beyond a critical Reynolds number, the plates set into oscillatory motion. This critical Reynolds number depends on the gap between the plates. It is also seen that this value of Reynolds number, at lower values of gap to thickness ratio (<7) is significantly higher than that of the single plate configuration value. The frequency and amplitude of the oscillating plates at various gaps and Reynolds numbers have been studied and compared with the characteristics of an oscillating single plate. It is also found that depending on the gap and acceleration of the free-stream, there exist two modes of oscillation - (i) in-phase and (ii) out-of-phase. For gap to thickness ratio less than 10, only in-phase oscillations take place for all values of free-stream velocity considered in the present work, whereas, when this ratio is greater than 10, the mode of oscillation depends on the initial conditions up to a certain free-stream velocity, beyond which the plates switch to in-phase mode. Smoke wire flow visualization technique along with time resolved particle image velocimetry reveal that the vorticity distributions around the plates are responsible for the initiation of the two modes of oscillations.  相似文献   
5.
Predicting the onset of non-spherical oscillations of bubbles in soft matter is a fundamental cavitation problem with implications to sonoprocessing, polymeric materials synthesis, and biomedical ultrasound applications. The shape stability of a bubble in a Kelvin-Voigt viscoelastic medium with nonlinear elasticity, the simplest constitutive model for soft solids, is analytically investigated and compared to experiments. Using perturbation methods, we develop a model reducing the equations of motion to two sets of evolution equations: a Rayleigh-Plesset-type equation for the mean (volume-equivalent) bubble radius and an equation for the non-spherical mode amplitudes. Parametric instability is predicted by examining the natural frequency and the Mathieu equation for the non-spherical modes, which are obtained from our model. Our theoretical results show good agreement with published experiments of the shape oscillations of a bubble in a gelatin gel. We further examine the impact of viscoelasticity on the time evolution of non-spherical mode amplitudes. In particular, we find that viscosity increases the damping rate, thus suppressing the shape instability, while shear modulus increases the natural frequency, which changes the unstable mode. We also explain the contributions of rotational and irrotational fields to the viscoelastic stresses in the surroundings and at the bubble surface, as these contributions affect the damping rate and the unstable mode. Our analysis on the role of viscoelasticity is potentially useful to measure viscoelastic properties of soft materials by experimentally observing the shape oscillations of a bubble.  相似文献   
6.
In this paper, we consider the three dimensional Cauchy problem of the compressible micropolar viscous flows. We prove the existence of unique global classical solution for smooth initial data with small initial energy but possibly large oscillations and the initial density may allowed to contain the interior and far field vacuum states. Furthermore, the large time behavior of the solution is obtained as well.  相似文献   
7.
Nonclassical effects in mesoscopic systems have attracted much attention recently. In this paper, it is shown that multiphonon bundle emission can be observed in a strong-coupling cavity optomechanical system. Theoretical analysis shows that when the driving field is adjusted to nth-order sideband excitation, the coupling between the cavity mode and the vibrational mode leads to super-Rabi oscillations, and finally results in an n-phonon bundles emission. Based on the current technology, this process can work in a wide range of parameters. Numerical simulation confirms the validity of the derivation. It is thought that this physical mechanism broadens the applications of cavity optomechanical system in realm of quantum phononics, such as in quantum metrology and phonon laser.  相似文献   
8.
Das  S. L.  Chatterjee  A. 《Nonlinear dynamics》2003,32(2):161-186
The method of multiple scales and the related method of averaging are commonly used tostudy slowly modulated oscillations. If the system of interest is a slightlyperturbed harmonic oscillator, then these techniques can be applied easily. If the unperturbed system is strongly nonlinear (though possiblyconservative), then these methods can run into difficulties due to the impossibilityof carrying out required analytical operations in closed form.In this paper, we abandon the requirement of closed form analyticaltreatment at all stages. Instead, Galerkin projections are used toobtain approximate realizations of the method of multiple scales. Thispaper adapts recent work using similar ideas for approximaterealizations of the method of averaging. A key contribution of thepresent work is in the systematic identification and removal of secularterms in the general nonlinear case, a procedure that is more difficultthan for the perturbed harmonic oscillator case, and that is unnecessaryfor averaging.A strength of the present work is that the heuristics (Galerkin)and asymptotics (multiple scales) are kept distinct,leaving room for systematic refinement of the formerwithout compromising the asymptotic features of the latter.  相似文献   
9.
We study the response of a single-degree-of-freedom system with cubic nonlinearities to an amplitude-modulated excitation whose carrier frequency is much higher than the natural frequency of the system. The only restriction on the amplitude modulation is that it contain frequencies much lower than the carrier frequency of the excitation. We apply the theory to different types of amplitude modulation and find that resonant excitation of the system may occur under some conditions.  相似文献   
10.
Buès  M.  Panfilov  M. 《Transport in Porous Media》2004,55(2):215-241
A solute transport through a porous medium is examined provided that the fluid leaving the porous sample returns back in a continuous way. The porous medium is thus included into a closed hydrodynamic circuit. This cycling process is suggested as an experimental tool to determine porous medium parameters describing transport. In the present paper the mathematical theory of this method is developed. For the advective type of transport with solute retention and degradation in porous medium, the system of transport equations in a closed circuit is transformed to a delay differential equation. The exact analytical solution to this equation is obtained. The solute concentration manifests both the oscillatory and monotonous behaviors depending on system parameters. The number of oscillation splashes is shown to be always finite. The maximum/minimum points are determined as solutions of a polynomial equation whose degree depends on the unknown solution itself. The cyclic methods to determine porous medium parameters as porosity and retention rate are developed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号