首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 306 毫秒
1.
We study non-linear bubble oscillations driven by an acoustic pressure with the bubble being immersed in a viscoelastic, Phan-Thien–Tanner liquid. Solution is provided numerically through a method which is based on a finite element discretization of the Navier–Stokes flow equations. The proposed computational approach does not rely on the solution of the simplified Rayleigh–Plesset equation, is not limited in studying only spherically symmetric bubbles and provides coupled solutions for the velocity, stress fields and bubble interface. We present solutions for non-spherical bubbles, with asphericity being addressed by means of Legendre polynomials or associated Legendre functions. A parametric investigation of the bubble dynamical oscillatory response as a function of the fluid rheological properties shows that the amplitude of bubble oscillations drastically increases as liquid elasticity (quantified by the Deborah number) increases or as liquid viscosity decreases (quantified by the Reynolds number). Extensive numerical calculations demonstrate that increasing elasticity and/or viscosity of the surrounding liquid tend to stabilize the shape anisotropy of an initially non-spherical bubble. Results are shown for pressure amplitudes 0.2–2 MPa and Deborah, Reynolds numbers in the intervals of 1–8 and 0.094–1.256, respectively.  相似文献   

2.
The nonlinear oscillations of a spherical, acoustically forced gas bubble in nonlinear viscoelastic media are examined. The constitutive equation [Upper-Convective Maxwell (UCM)] used for the fluid is suitable for study of large-amplitude excursions of the bubble, in contrast to the previous work of the authors which focused on the smaller amplitude oscillations within a linear viscoelastic fluid [J. S. Allen and R. A. Roy, J. Acoust. Soc. Am. 107, 3167-3178 (2000)]. Assumptions concerning the trace of the stress tensor are addressed in light of the incorporation of viscoelastic constitutive equations into bubble dynamics equations. The numerical method used to solve the governing system of equations (one integrodifferential equation and two partial differential equations) is outlined. An energy balance relation is used to monitor the accuracy of the calculations and the formulation is compared with the previously developed linear viscoelastic model. Results are found to agree in the limit of small deformations; however, significant divergence for larger radial oscillations is noted. Furthermore, the inherent limitations of the linear viscoelastic approach are explored in light of the more complete nonlinear formulation. The relevance and importance of this approach to biomedical ultrasound applications are highlighted. Preliminary results indicate that tissue viscoelasticity may be an important consideration for the risk assessment of potential cavitation bioeffects.  相似文献   

3.
马艳  林书玉  徐洁 《物理学报》2018,67(3):34301-034301
计算了两个具有非球形扰动的气泡所组成系统的能量,并基于Lagrange方程得到了有声相互作用的非球形气泡的动力学方程和形状稳定性方程,研究了声场中非球形气泡间相互作用力对非球形气泡的形状不稳定性和气泡形状模态振幅的影响.研究结果表明声场中具有非球形扰动的气泡之间的耦合方式有两种:形状耦合模式和径向耦合模式,气泡之间的耦合方式取决于气泡形状扰动模态.由形状耦合及径向耦合产生的气泡之间的相互作用力能够改变单个气泡的形状不稳定及形状模态振幅,具体影响因素取决于声场驱动条件、气泡形状模态、相邻气泡的初始半径.  相似文献   

4.
Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability.  相似文献   

5.
To facilitate practical medical applications such as cancer treatment utilizing focused ultrasound and bubbles, a mathematical model that can describe the soft viscoelasticity of human body, the nonlinear propagation of focused ultrasound, and the nonlinear oscillations of multiple bubbles is theoretically derived and numerically solved. The Zener viscoelastic model and Keller–Miksis bubble equation, which have been used for analyses of single or few bubbles in viscoelastic liquid, are used to model the liquid containing multiple bubbles. From the theoretical analysis based on the perturbation expansion with the multiple-scales method, the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation, which has been used as a mathematical model of weakly nonlinear propagation in single phase liquid, is extended to viscoelastic liquid containing multiple bubbles. The results show that liquid elasticity decreases the magnitudes of the nonlinearity, dissipation, and dispersion of ultrasound and increases the phase velocity of the ultrasound and linear natural frequency of the bubble oscillation. From the numerical calculation of resultant KZK equation, the spatial distribution of the liquid pressure fluctuation for the focused ultrasound is obtained for cases in which the liquid is water or liver tissue. In addition, frequency analysis is carried out using the fast Fourier transform, and the generation of higher harmonic components is compared for water and liver tissue. The elasticity suppresses the generation of higher harmonic components and promotes the remnant of the fundamental frequency components. This indicates that the elasticity of liquid suppresses shock wave formation in practical applications.  相似文献   

6.
A mathematical model is constructed for the bubble dynamics, in which the interphase surface variation is presented in the form of a series in spherical harmonics, and the equations are written with the accuracy up to the squared amplitude of the distortion of the spherical shape of the bubble. In the oscillation regimes close to periodic sonoluminescence of a single bubble in a standing acoustic wave, the character of air bubble oscillations in water was studied depending on the bubble initial radius and the amplitude of the liquid pressure variation. It was found that non-spherical oscillations of bounded amplitude can take place outside the region of linearly stable spherical oscillations. Both the oscillations with a period equal to one or several periods of the liquid pressure variation and aperiodic oscillations are observed. It is shown that neglecting the distortions in the form of spherical harmonics with large numbers (i > 3) may lead to a change of oscillation regimes. The influence of distortions on the bubble surface shape for the harmonics with i > 8 is insignificant.  相似文献   

7.
A model for the dynamics of gas bubbles in soft tissue   总被引:1,自引:0,他引:1  
Understanding the behavior of cavitation bubbles driven by ultrasonic fields is an important problem in biomedical acoustics. Keller-Miksis equation, which can account for the large amplitude oscillations of bubbles, is rederived in this paper and combined with a viscoelastic model to account for the strain-stress relation. The viscoelastic model used in this study is the Voigt model. It is shown that only the viscous damping term in the original equation needs to be modified to account for the effect of elasticity. With experiment determined viscoelastic properties, the effects of elasticity on bubble oscillations are studied. Specifically, the inertial cavitation thresholds are determined using R(max)/R(0), and subharmonic signals from the emission of an oscillating bubble are estimated. The results show that the presence of the elasticity increases the threshold pressure for a bubble to oscillate inertially, and subharmonic signals may only be detectable in certain ranges of radius and pressure amplitude. These results should be easy to verify experimentally, and they may also be useful in cavitation detection and bubble-enhanced imaging.  相似文献   

8.
A two-degree-of-freedom model for an almost-axially impacted viscoelastic cantilever column is analyzed. The impact load is produced by a mass striking the free end of the column. Under the assumption of small displacements two second-order non-linear ordinary differential equations for the coupled longitudinal and transverse vibrations of the column are derived. In the absence of damping these equations of motion are reduced to Mathieu's equation through the use of a perturbation method. The excitation parameters are (i) the natural frequency of small amplitude transverse vibrations of the undamped column and (ii) the initial velocity of the end of the column. The boundaries of two unstable regions are obtained. In the stable regions the solution of Mathieu's equation for the transverse displacement is close to that of the original non-linear equations of motion. In the first unstable region there is agreement only for early time. With increasing damping the peak of the maximum transverse displacement in the first unstable region decreases or even vanishes.  相似文献   

9.
Analytical calculation in the first order of smallness shows that the equilibrium shape of a drop in the field of a point charge is axisymmetric about the plane passing through the center of mass of the drop normally to the axis connecting the center of mass with the point charge. Whether the equilibrium shape of the drop is stable or not depends on the value of the field parameter, which, in turn, depends on the point charge and the distance to it. There is an asymptotic value of the critical parameter above which all modes become unstable. In the field of the point charge, the mode coupling grows; that is, a mode excited at the zero time generates oscillations of the six nearest modes with amplitudes proportional to that of the initially excited mode. If the initially excited mode loses stability, all the modes coupled with it also become unstable. The surface instability of the drop also develops when the initially excited mode is stable but at least one of the modes coupled with it is unstable.  相似文献   

10.
Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.  相似文献   

11.
Behavior of a poro-elastic material bonded onto a vibrating plate is investigated in the low-frequency range. From the analysis of dissipation mechanisms, a model accounting for damping added by the porous layer on the plate is derived. This analysis is based on a 3-D finite element formulation including poro-elastic elements based on Biot displacement theory. First, dissipated powers related to thermal, viscous and viscoelastic dissipation are explicited. Then a generic configuration (simply-supported aluminium plate with a bonded porous layer and mechanical excitation) is studied. Thermal dissipation is found negligible. Viscous dissipation can be optimized as a function of airflow resistivity. It can be the major phenomenon within soft materials, but for most foams viscoelastic dissipation is dominant. Consequently an equivalent plate model is proposed. It includes shear in the porous layer and only viscoelasticity of the skeleton. Excellent agreement is found with the full numerical model.  相似文献   

12.
We present a Navier-Stokes/Oldroyd-B immersed boundary algorithm that captures the interaction of a flexible structure with a viscoelastic fluid. In particular, we study the effects of bulk viscoelasticity on freely decaying shape oscillations of an Oldroyd-B fluid droplet suspended in an Oldroyd-B matrix. Our numerical data indicate that if the fluid viscosity is low, viscoelasticity plays a modulating role in the drop shape relaxation; specifically, it increases the oscillation frequency and decreases the decay rate when the fluid relaxation time is above a critical value. In the high viscosity limit, i.e., when a Newtonian droplet is expected to return to a spherical shape with an aperiodic decay, an increase in the relaxation time eventually results in the reappearance of the oscillations. Both these results are in line with the prediction of small deformation theory for viscoelastic droplet oscillations. The algorithm was also validated by direct comparison with linear asymptotics.  相似文献   

13.
Governing equations of motion for vibrations of a general multilayered plate consisting of an arbitrary number of alternate stiff and soft layers of orthotropic materials are derived by using variational principles. Extension, bending and in-plane shear deformations in stiff layers and only transverse shear deformations in soft layers are considered as in conventional sandwich structural analysis. In addition to transverse inertia, longitudinal translatory and rotary inertias are included, as such analysis gives higher order modes of vibration and leads to accurate results for relatively thick plates. Vibration and damping analysis of rectangular simply supported plates consisting of alternate elastic and viscoelastic layers is carried out by taking a series solution and applying the correspondence principle of linear viscoelasticity. The damping effectiveness, in term of the system loss factor, for all families of modes for three-, five- and seven-layered plates is evaluated and its variations with geometrical and material property parameters are investigated.  相似文献   

14.
An analytical investigation of the effect of three-wave resonant interactions with the linearly unstable wave is proposed. We consider the waves in the Kelvin-Helmholtz model, consisting of two fluid layers with different densities and velocities. We suppose that the velocity shear is weakly supercritical, the instability is of the algebraic type, i.e., the amplitude of the unstable wave grows linearly, and the instability occurs within the framework of a single mode. The amplitudes of two other waves taking part in the nonlinear interaction are assumed to be stable. The initial amplitudes of these waves are supposed to be small in comparison with the initial amplitude of the unstable wave. We present an analysis of the system of amplitude equations derived for this case using JWKB-method. As a result, we obtain equations that couple solutions pre- and post-passing the singular point, i.e., the point where the amplitude of the unstable wave has a local minimum. These equations give us the transformation rule of a parameter that characterizes the phase shift between fast and slow waves and defines the behavior of the system. This parameter is constant between two singular points and varies by chance at a singular point. As long as it stays positive, the amplitude of the wave remains limited and performs stochastic oscillations. If this parameter passes over zero, then we leave the region of stabilization and turn out in the region, where the amplitude grows infinitely. Accordingly, the transition to the region of instability happens stochastically. However, if the time interval, when the amplitude remains bounded, is large enough, the proposed scenario can be treated as a partial stabilization of instability.  相似文献   

15.
Simulations of bubble entrainment into a stationary Gaussian vortex are performed by using the combined particle tracking method (PTM) and boundary element method (BEM). Before the bubble is captured by the vortex core, oscillation and migration of the quasi-spherical nucleus are solved by using improved RP equation and the momentum theorem in the Lagrangian reference frame simultaneously, and the trajectory of the nucleus presents a kind of reduced helix shape. After captured by the vortex core, the bubble grows immediately and moves and deforms along the vortex core axis. The non-spherical evolution and deformation of the bubble is simulated by adopting a mixed Eulerian-Lagrangian method. The output of quasi-spherical stage is taken as the input of non-spherical stage, and all the behaviors of the entrained bubble can be simulated such as inception, motion, deformation and split. Numerical results agree well with published experimental data. On this basis, the influences of various factors such as viscosity, surface tension, buoyancy are studied systemically. Hopefully the results from this paper would provide some insight into the control on vortex bubble entrainment.  相似文献   

16.
The Kramers–Kronig dispersion relation, often used as a viscoelastic constitutive law for polymeric materials, is based on purely mathematical properties of linearity, convergence of improper integrals, and causality; thus, it may also be valid as a viscoelastic constitutive law for general structural materials. Accordingly, the motion equation of a Timoshenko beam composed of conventional elastic structural materials is extended to one composed of viscoelastic materials. From the derived governing equation, a dispersive equation is derived for a viscoelastic Timoshenko beam. By plotting phase velocity curves and group velocity curves for a beam of solid circular cross-section composed of a viscoelastic material (polyvinyl chloride foam), the influence of the fractional order of viscoelasticity is examined. As a result, it is found that, in the high frequency range, only the first mode of a Timoshenko beam converged to the propagation velocity of the Rayleigh wave, which takes account of the fractional order of viscoelasticity. In addition, the phase velocity and the group velocity were found to increase as the fractional order approaches 0, and to decrease as the fractional order approaches 1. Furthermore, the rate of velocity change becomes greater as the fractional order approaches 0, and becomes smaller as the fractional order approaches 1.  相似文献   

17.
The dynamics of a micrometer-sized bubble pair in water near a rigid boundary under standing ultrasonic wave excitation is investigated in this study. The viscous effect in the boundary layer at the air-water interface is considered following the viscous correction model. The evolution of the bubble surface at the collapsing stage of the bubble pair is presented for different parameter sets. The field pressure near the rigid boundary, which is induced by the oscillating bubble pair, and the high-speed water jet at the collapse stage, form the main focus of the analysis. This reveals that a horizontal configuration of the bubble pair retards the strength of the bubble jet towards the boundary, whilst a vertical configuration, especially with differently-sized bubbles, can enhance the bubble collapse. This study may help to understand the interaction of multiple bubbles in an acoustic field and its application to surface cleaning.  相似文献   

18.
Non-linear acoustic oscillations of gas bubbles immersed in viscoelastic fluids are theoretically studied. The problem is formulated by considering a constitutive equation of differential type with an interpolated time derivative. With the aid of this rheological model, fluid elasticity, shear thinning viscosity and extensional viscosity effects may be taken into account. Bubble radius evolution in time is analyzed and it is found that the amplitude of the bubble oscillations grows drastically as the Deborah number (the ratio between the relaxation time of the fluid and the characteristic time of the flow) increases, so that, even for moderate values of the external pressure amplitude, the behavior may become chaotic. The quantitative influence of the rheological fluid properties on the pressure thresholds for inertial cavitation is investigated. Pressure thresholds values in terms of the Deborah number for systems of interest in ultrasonic biomedical applications, are provided. It is found that these critical pressure amplitudes are clearly reduced as the Deborah number is increased.  相似文献   

19.
We formulated a pressure equation for bubbles performing nonlinear radial oscillations under ultrasonic high pressure amplitudes. The proposed equation corrects the gas pressure at the gas–liquid interface on inertial bubbles. This pressure formulation, expressed in terms of gas-Mach number, accounts for dampening due to gas compressibility during the violent collapse of cavitation bubbles and during subsequent rebounds. We refer to this as inhomogeneous pressure, where the gas pressure at the gas–liquid interface can differ to the pressure at the centre of the bubble, in contrast to homogenous pressure formulations that consider that pressure inside the bubble is spatially uniform from the wall to the centre. The pressure correction was applied to two bubble dynamic models: the incompressible Rayleigh–Plesset equation and the compressible Keller and Miksis equation. This improved the predictions of the nonlinear radial motion of the bubble vs time obtained with both models. Those simulations were also compared with other bubble dynamics models that account for liquid and gas compressibility effects. It was found that our corrected models are in closer agreement with experimental data than alternative models. It was concluded that the Rayleigh–Plesset family of equations improve accuracy by using our proposed pressure correction.  相似文献   

20.
This paper presents the research devoted to the study of instability phenomena in non-linear model with a constant brake friction coefficient. Indeed, the impact of unstable oscillations can be catastrophic. It can cause vehicle control problems and component degradation. Accordingly, complex stability analysis is required. This paper outlines stability analysis and centre manifold approach for studying instability problems. To put it more precisely, one considers brake vibrations and more specifically heavy trucks judder where the dynamic characteristics of the whole front axle assembly is concerned, even if the source of judder is located in the brake system. The modelling introduces the sprag-slip mechanism based on dynamic coupling due to buttressing. The non-linearity is expressed as a polynomial with quadratic and cubic terms. This model does not require the use of brake negative coefficient, in order to predict the instability phenomena. Finally, the centre manifold approach is used to obtain equations for the limit cycle amplitudes. The centre manifold theory allows the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system as well as the contributions of non-linear terms. The goal is the study of the stability analysis and the validation of the centre manifold approach for a complex non-linear model by comparing results obtained by solving the full system and by using the centre manifold approach. The brake friction coefficient is used as an unfolding parameter of the fundamental Hopf bifurcation point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号