首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1540篇
  免费   98篇
  国内免费   36篇
化学   474篇
晶体学   22篇
力学   35篇
综合类   6篇
数学   472篇
物理学   665篇
  2023年   37篇
  2022年   78篇
  2021年   12篇
  2020年   37篇
  2019年   11篇
  2018年   15篇
  2017年   24篇
  2016年   28篇
  2015年   16篇
  2014年   25篇
  2013年   45篇
  2012年   34篇
  2011年   30篇
  2010年   35篇
  2009年   111篇
  2008年   129篇
  2007年   102篇
  2006年   88篇
  2005年   74篇
  2004年   86篇
  2003年   71篇
  2002年   60篇
  2001年   62篇
  2000年   61篇
  1999年   42篇
  1998年   43篇
  1997年   24篇
  1996年   31篇
  1995年   42篇
  1994年   33篇
  1993年   29篇
  1992年   30篇
  1991年   21篇
  1990年   10篇
  1989年   13篇
  1988年   5篇
  1987年   8篇
  1986年   8篇
  1985年   3篇
  1984年   5篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   5篇
  1978年   13篇
  1977年   5篇
  1976年   6篇
  1975年   1篇
  1974年   5篇
  1973年   3篇
排序方式: 共有1674条查询结果,搜索用时 234 毫秒
1.
The present study optimised the ultrasound-assisted extraction (UAE) of bioactive compounds from Amaranthus hypochondriacus var. Nutrisol. Influence of temperature (25.86–54.14 °C) and ultrasonic power densities (UPD) (76.01–273.99 mW/mL) on total betalains (BT), betacyanins (BC), betaxanthins (BX), total polyphenols (TP), antioxidant activity (AA), colour parameters (L*, a*, and b*), amaranthine (A), and isoamaranthine (IA) were evaluated using response surface methodology. Moreover, betalain extraction kinetics and mass transfer coefficients (KLa) were determined for each experimental condition. BT, BC, BX, TP, AA, b*, KLa, and A were significantly affected (p < 0.05) by temperature extraction and UPD, whereas L*, a*, and IA were only affected (p < 0.05) by temperature. All response models were significantly validated with regression coefficients (R2) ranging from 87.46 to 99.29%. BT, A, IA, and KLa in UAE were 1.38, 1.65, 1.50, and 29.93 times higher than determined using conventional extraction, respectively. Optimal UAE conditions were obtained at 41.80 °C and 188.84 mW/mL using the desired function methodology. Under these conditions, the experimental values for BC, BX, BT, TP, AA, L*, a*, b*, KLa, A, and IA were closely related to the predicted values, indicating the suitability of the developed quadratic models. This study proposes a simple and efficient UAE method to obtain betalains and polyphenols with high antioxidant activity, which can be used in several applications within the food industry.  相似文献   
2.
There is a growing attention to the bio and renewable energies due to fast depletion of fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation method by means of artificial intelligence (AI) for prediction of the bioenergy production from vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process. Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive boosting algorithm. The important influencing parameters on the biodiesel production such as the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected as the input variables of models while the yield of FAME production was selected as output. Model hyper-parameters were tuned to maintain generality while improving prediction accuracy. The models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and 3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. Therefore, it can be concluded that although the boosted SVR and ANN models were better models for prediction of process efficiency in terms of error, but all algorithms had high accuracy. The optimum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating values from boosted SVR and ANN models, respectively.  相似文献   
3.
In the present study, novel representatives of the important group of biologically-active, dehydroabietic acid-bearing dithiocarbamate moiety, were synthesized and characterized by 1H NMR, 13C NMR, HR-MS. The in vitro antiproliferative activity evaluation (MTT) indicated that these compounds exhibited potent inhibitory activities in various cancer cell lines (HepG-2, MCF-7, HeLa, T-24, MGC-803). Particularly, compound III-b possessed extraordinary cytotoxicity with low micromolar IC50 values ranging from 4.07 to 38.84 µM against tested cancer cell lines, while displayed weak cytotoxicity on two normal cell lines (LO-2 and HEK 293 T). Subsequently, the potential mechanisms of representative compound III-b were elementarily investigated by Transwell experiment, which showed III-b can inhibit cancer cells migration. Annexin-V/PI dual staining showed that the compound can induce HepG-2 cells apoptosis in a dose-dependent manner. Meanwhile this apoptosis may be related to the upregulated protein expression of cleaved-caspase 3, cleaved-caspase 9, Bax and downregulated of Bcl-2 indicated by Western Blot. Later study further confirmed that ROS levels in HepG-2 cells increased significantly with the rise of concentrations. In addition, through the network pharmacology data analyzing, the core targets and signaling pathways of compound III-b for treatment of liver neoplasms were forecasted. Molecular docking model showed that compound III-b had high affinity with hub targets (CASP3, EGFR, HSP90AA1, MAPK1, ERBB2, MDM2), suggesting that compound III-b might target the hub protein to modulate signaling activity. Taken together, these data indicated that dehydroabietic acid structural modification following the “Molecular hybridization” principle is a feasible way to discover the potential multi-targeted antitumor compounds.  相似文献   
4.
Processing of Carapa guianensis seeds to obtain oil on an industrial scale generates a significant amount of by-product, approximately 66% w/w, which is called cake and is a potential source of biomolecules, including simple phenolic structures. For this reason, studies were carried out on the chemical profiles of hydrolyzed extract from this agro-industrial by-product through High Performance Thin-Layer Chromatography (HPTLC) and Gas Chromatography coupled to Mass Spectrometry (GC–MS). These techniques were used to detect metabolic classes and/or groups, and to identify, for the first time, thirteen simple phenolic acids in this by-product. The sample antioxidant capacity was determined by methods of 2,2-diphenyl-1-picrylhydrazyl (DPPH)and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) radicals direct sequestration. The hydrolyzed fraction showed a total of 63.47% in the relative abundance of the total of compounds, standing out: p-hydroxybenzoic acid (39.19%) and protocatechuic acid (3,4-dihydroxybenzoic acid) (5.62%), both from hydroxybenzoic acids and 3-(3,4-dihydroxyphenyl)lactic acid, (7.76%) hydroxycinnamic acids derivatives. In these results, the fraction rich in simple phenolic acids was obtained, attributing the prominent behavior of this matrix antioxidant activity, expressed by (IC50: of 16.42 µg/mL and 6.52 µg/mL for DPPH and ABTS+ radicals, respectively). The research demonstrated an alternative to applicability that involves sustainability from agro-industrial. These techniques were used to detect metabolic classes and/or groups, and to identify, for the first time, thirteen simple phenolic acids in this by-product, generating a process capable of converting biomass into a bioproduct, consisting of bioactive compounds, in addition to adding value to the industrial chain.  相似文献   
5.
Performing a heterogeneous catalysis with proteins is still a challenge. Herein, we demonstrate the importance of cross-linked crystals for sulfoxide oxidation by an artificial enzyme. The biohybrid consists of the insertion of an iron complex into a NikA protein crystal. The heterogeneous catalysts displays a better efficiency-with higher reaction kinetics, a better stability and expand the substrate scope compared to its solution counterpart. Designing crystalline artificial enzymes represents a good alternative to soluble or supported enzymes for the future of synthetic biology.  相似文献   
6.
The crossing number CR ( G ) of a graph G k="goodbreak">= ( V , E ) is the smallest number of edge crossings over all drawings of G in the plane. For any k k="goodbreak">≥ 1 , the k planar crossing number of G k="goodbreak">, CR k ( G ) , is defined as the minimum of CR ( G 1 ) k="goodbreak">+ CR ( G 2 ) + ? + CR ( G k ) over all graphs G 1 k="goodbreak">, G 2 , , G k with i = 1 k G i k="goodbreak">= G . Pach et al [Comput. Geom.: Theory Appl. 68 (2018), pp. 2–6] showed that for every k k="goodbreak">≥ 1 , we have CR k ( G ) k="goodbreak">≤ ( 2 / k 2 ? 1 / k 3 ) CR ( G ) and that this bound does not remain true if we replace the constant 2 k="goodbreak">/ k 2 k="goodbreak">? 1 k="goodbreak">/ k 3 by any number smaller than 1 k="goodbreak">/ k 2 . We improve the upper bound to ( 1 / k 2 ) ( 1 + o ( 1 ) ) as k k="goodbreak">→ . For the class of bipartite graphs, we show that the best constant is exactly 1 k="goodbreak">/ k 2 for every k . The results extend to the rectilinear variant of the k ‐planar crossing number.  相似文献   
7.
设S(n)是Smarandache函数,其中n是一正整数.讨论Smarandache函数S(n)在数列F((2k),1)=F(n,1)=n2n+1(n=2k)与数列G(2n,1)=(2n)2n+1上的下界估计.基于初等方法证明了:当偶数n≥6时,有S(F((2k),1))=S(F(n,1))≥6×2n+1;当n≥4时,有S(G(2n,1))≥6×2n+1.  相似文献   
8.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   
9.
Dendrobium nobile alkaloids (DNLA) and glycosides are the main active components extracted from Dendrobium nobile Lindl. (D. nobile) used for thousands of years in China. The pharmacological effects of the above chemical components are significantly different. D. nobile is mainly grown at an altitude ranging from 230 to 800 m in Chishui City, Northwest Guizhou Province. However, it is unclear whether the metabolite in D. nobile is influenced by the planting altitude. Hence, to reveal the different metabolite in D. nobile cultivated at the altitude of 336 m, 528 m, and 692 m, ultra-high performance liquid chromatography with Q/TOF-MS couple with multivariate analysis were developed. Using the orthogonal partial least squares-discriminant analysis, 19 different metabolites were discovered and then tentatively assigned their structures as alkaloids and glycosides by comparing mass spectrometry data with in-house database and literature. Moreover, the result of semiquantitative analysis showed the content of dendrobine that was belonged to alkaloids significantly increased at the altitude of 692 m, whereas the content of glycosides demonstrated an accumulation trend at the altitude of 528 m. The results could provide valuable information for the optimal clinical drug therapeutics and provide a reference for quality control.  相似文献   
10.
For graphs G and H , an H‐coloring of G is a map from the vertices of G to the vertices of H that preserves edge adjacency. We consider the following extremal enumerative question: for a given H , which connected n‐vertex graph with minimum degree δ maximizes the number of H‐colorings? We show that for nonregular H and sufficiently large n , the complete bipartite graph is the unique maximizer. As a corollary, for nonregular H and sufficiently large n the graph is the unique k‐connected graph that maximizes the number of H‐colorings among all k‐connected graphs. Finally, we show that this conclusion does not hold for all regular H by exhibiting a connected n‐vertex graph with minimum degree δ that has more ‐colorings (for sufficiently large q and n ) than .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号