首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   17篇
  国内免费   7篇
化学   12篇
力学   84篇
数学   269篇
物理学   133篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   6篇
  2019年   9篇
  2018年   7篇
  2017年   17篇
  2016年   21篇
  2015年   9篇
  2014年   24篇
  2013年   25篇
  2012年   36篇
  2011年   29篇
  2010年   29篇
  2009年   32篇
  2008年   39篇
  2007年   32篇
  2006年   17篇
  2005年   19篇
  2004年   20篇
  2003年   8篇
  2002年   6篇
  2001年   7篇
  2000年   9篇
  1999年   9篇
  1998年   11篇
  1997年   11篇
  1996年   6篇
  1995年   12篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1977年   1篇
  1976年   2篇
排序方式: 共有498条查询结果,搜索用时 15 毫秒
1.
High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lca, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lca and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that:(i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm3 can be easily realized for as-mtSOFC with single-and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with lca2(2 mm, 40 mm) is determined for three representative (rin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.  相似文献   
2.
We consider the dynamical stability of horizontal fluid layer, performing harmonic oscillations in vertical direction. The continued fractions approach allowed us to avoid the conventional restriction to the case of small viscosity and almost-resonant frequencies. Our numerical results cover a wide range of the parameters (viscosity, amplitude and frequency of the oscillation, and depth of the layer). To cite this article: V.I. Yudovich et al., C. R. Mecanique 332 (2004).  相似文献   
3.
The paper presents a non-element method of solving boundary problems defined on polygonal domains modeled by corner points. To solve these problems a parametric integral equation system (PIES) is used. The system is characterized by a separation of the approximation of boundary geometry from the approximation of boundary functions. This feature makes it possible to effectively investigate the convergence of the obtained solutions with no need of performing the approximation of boundary geometry. The testing examples included confirm high accuracy of the solutions.  相似文献   
4.
Tylikowski  A. 《Meccanica》2003,38(6):659-668
The purpose of the present paper is to solve an active control problem of nonlinear continuous system parametric vibrations excited by the fluctuating force. The problem is solved using the concept of distributed piezoelectric sensors and actuators with a sufficiently large value of velocity feedback. The direct Liapunov method is proposed to establish criteria for the almost sure stochastic stability of the unperturbed (trivial) solution of the shell with closed-loop control. The distributed control is realized by the piezoelectric sensor and actuator, with the changing widths, glued to the upper and lower shell surface. The relation between the stabilization of nonlinear problem and a linearized one is examined. The fluctuating axial force is modeled by the physically realizable ergodic process. The rate velocity feedback is applied to stabilize the shell parametric vibrations.  相似文献   
5.
Rain-wind-induced vibrations of a simple oscillator   总被引:1,自引:0,他引:1  
In this paper a relatively simple mechanical oscillator which may be used to study rain-wind-induced vibrations of stay cables of cable-stayed bridges is considered. In recent publications, mention is made of vibrations of (inclined) stay cables which are excited by a wind field containing rain drops. The rain drops that hit the cables generate a rivulet on the surface of the cable. The presence of flowing water on the cable changes the cross section of the cable experienced by the wind field. A symmetric flow pattern around the cable with circular cross section may become asymmetric due to the presence of the rivulet and may consequently induce a lift force as a mechanism for vibration. During the motion of the cable the position of rivulet(s) may vary as the motion of the cable induces an additional varying aerodynamic force perpendicular to the direction of the wind field. It seems not too easy to model this phenomenon, several author state that there is no model available yet.The idea to model this problem is to consider a horizontal cylinder supported by springs in such a way that only one degree of freedom, i.e. vertical vibration is possible. We consider a ridge on the surface of the cylinder parallel to the axis of the cylinder. Additionally, let the cylinder with ridge be able to oscillate, with small amplitude, around the axis such that the oscillations are excited by an external force.It may be clear that the small amplitude oscillations of the cylinder and hence of the ridge induce a varying lift and drag force. In this approach it is assumed that the motion of the ridge models the dynamics of the rivulet(s) on the cable. By using a quasi-steady approach to model the aerodynamic forces, one arrives at a non-linear second-order equation displaying three different kinds of excitation mechanisms: self-excitation, parametric excitation and ordinary forcing. The first results of the analysis of the equation of motion show that even in a linear approximation for certain values of the parameters involved, stable periodic motions are possible. In the relevant cases where in linear approximation unstable periodic motions are found, results of an analysis of the non-linear equation are presented.  相似文献   
6.
Adaptive estimation procedures have gained significant attention by the research community to perform real-time identification of non-linear hysteretic structural systems under arbitrary dynamic excitations. Such techniques promise to provide real-time, robust tracking of system response as well as the ability to track time variation within the system being modeled. An overview of some of the authors’ previous work in this area is presented, along with a discussion of some of the emerging issues being tackled with regard to this class of problems. The trade-offs between parametric-based modeling and non-parametric modeling of non-linear hysteretic dynamic system behavior are discussed. Particular attention is given to (1) the effects of over- and under-parameterization on parameter convergence and system output tracking performance, (2) identifiability in multi-degree-of-freedom structural systems, (3) trade-offs in setting user-defined parameters for adaptive laws, and (4) the effects of noise on measurement integration. Both simulation and experimental results indicating the performance of the parametric and non-parametric methods are presented and their implications are discussed in the context of adaptive structures and structural health monitoring.  相似文献   
7.
Predicting the onset of non-spherical oscillations of bubbles in soft matter is a fundamental cavitation problem with implications to sonoprocessing, polymeric materials synthesis, and biomedical ultrasound applications. The shape stability of a bubble in a Kelvin-Voigt viscoelastic medium with nonlinear elasticity, the simplest constitutive model for soft solids, is analytically investigated and compared to experiments. Using perturbation methods, we develop a model reducing the equations of motion to two sets of evolution equations: a Rayleigh-Plesset-type equation for the mean (volume-equivalent) bubble radius and an equation for the non-spherical mode amplitudes. Parametric instability is predicted by examining the natural frequency and the Mathieu equation for the non-spherical modes, which are obtained from our model. Our theoretical results show good agreement with published experiments of the shape oscillations of a bubble in a gelatin gel. We further examine the impact of viscoelasticity on the time evolution of non-spherical mode amplitudes. In particular, we find that viscosity increases the damping rate, thus suppressing the shape instability, while shear modulus increases the natural frequency, which changes the unstable mode. We also explain the contributions of rotational and irrotational fields to the viscoelastic stresses in the surroundings and at the bubble surface, as these contributions affect the damping rate and the unstable mode. Our analysis on the role of viscoelasticity is potentially useful to measure viscoelastic properties of soft materials by experimentally observing the shape oscillations of a bubble.  相似文献   
8.
We consider two-stage recourse models with integer restrictions in the second stage. These models are typically non-convex and hence, hard to solve. There exist convex approximations of these models with accompanying error bounds. However, it is unclear how these error bounds depend on the distributions of the second-stage cost vector q. In this paper, we derive parametric error bounds whose dependence on the distribution of q is explicit: they scale linearly in the expected value of the ?1-norm of q.  相似文献   
9.
A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical statement of the given problem. The presence of cutouts essentially complicates the solution of buckling problem, since the stress field is non-uniform. At first, a plane stress analysis is carried out using the variational Ritz method and the R-functions theory. The obtained results are applied to investigate buckling and parametric vibrations of laminated plates. The developed method uses the R-functions theory, and it may be directly employed to study laminated plates of arbitrary forms and different boundary conditions. Besides, the proposed method is numerical-analytical, what greatly facilitates a solution of similar-like non-linear problems. In order to show the advantage of the developed approach, instability zones and response curves for the layered cross- and angle-ply plates with external cutouts are constructed and discussed.  相似文献   
10.
Mathematical requirements that the random coefficients of stochastic elliptical partial differential equations must satisfy such that they have unique solutions have been studied extensively. Yet, additional constraints that these coefficients must satisfy to provide realistic representations for physical quantities, referred to as physical requirements, have not been examined systematically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号