首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
力学   16篇
  2023年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
  1995年   2篇
  1993年   1篇
  1971年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
晃荡     
本文列举了诸多工程领域中的液体共振运动现象,详细探讨了船舱中伴有剧烈流动的晃荡问题.描述了基于理论分析的非线性多模态方法,该方法便于波动稳定性分区、多分支解和物理稳定性的研究.强调了方形舱、垂向圆柱舱以及球形舱内伴有旋转和混沌(不规则波动)的三维流动的重要性.晃荡引起的砰击涉及到各种各样的内流条件,这些条件随液体深度与舱体长度之比而变化.针对棱柱状LNG舱,讨论了许多与流体力学和热力学参数、影响砰击载荷效应的水弹性以及模型实验缩尺比的物理现象.  相似文献   
2.
In the maritime environment slamming is a phenomenon known as short duration impact of water on a floating or sailing structure. Slamming loads are local and could induce very high local stresses. This paper reports a series of impact test results and investigate the slamming loads and pressures acting on a square based pyramid. In this study the slamming tests have been conducted at constant velocity impact with a hydraulic high speed shock machine. This specific experimental equipment avoids the deceleration of the structure observed usually during water entry with drop tests. Three velocities of the rigid pyramid have been used (10, 13 and 15 m s−1). Time-histories of local pressures, accelerations and slamming loads were successfully measured. The relationship between the pressure magnitude and the impact velocity is obtained and the spatial distribution of pressures on pyramid sides is characterized. The impact velocity was found to have a negligible influence in predicting the maximum pressure coefficient.  相似文献   
3.
In this paper an incompressible smoothed particle hydrodynamics (Incom‐SPH) model is used to simulate the interactions between the free surface flow and a moving object. Incom‐SPH method is a two‐step semi‐implicit hydrodynamic formulation of the SPH algorithm and is capable of accurately treating the free surface deformations and impact forces during the solid–fluid interactions. For a free‐falling object, its motion is tracked by an additional Lagrangian algorithm based on Newton's law to couple with the Incom‐SPH program. The developed model is employed to investigate the water entry of a free‐falling wedge. The accuracy of the computations is validated by the good agreement in predicting the relevant hydrokinematic and hydrodynamic parameters. Finally, a numerical test is performed to study the influence of spatial resolution on the water entry features. The Incom‐SPH modeling coupled with the solid–fluid interaction algorithm could provide a promising computational tool to predict the slamming problems in coastal and offshore engineering. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
4.
Announcements     
Recent numerical investigations on pressure surges during pump trip in pumping installations showed that by including an air entrainment variable wave speed model, reasonable predictions of transient pressure surges with proper phasing and attenuation of pressure peaks can be obtained. These calculated results are consistent with similar field measurements made with the pumps operating at low pump cut-out levels, when air entrainment due to an attached surface vortex was observed. However, in the numerical calculation procedures it is assumed that the inertia of the moving elements of the check valve is small and that the check valve closes at zero reverse flow velocity. In practice, check valves seldom close precisely at zero reverse flow velocity. With the check valves not closing at zero reverse velocity, the present numerical computations show that the air content in a fluid system can adversely affect the check valve performance. With the fluid system operating within a critical range of air entrainment values, the present analysis showed that there is a possibility of ‘check valve slamming’ when the check valves are selected based only on the analysis of an air-free system. This phenomenon is confirmed through field observations.  相似文献   
5.
The elasto-plastic dynamic buckling and postbuckling phenomena ofsquare plates subjected to in-plane solid-fluid slamming are investigated.According tothe plate's response,the critical criteria for dynamic buckling,dynamic plasticity andplasti(?)collapse are defined,and the corresponding critical impulses are presented.Meanwhile,dynamic buckling modes and collapse models are observed.The effects ofdifferent boundary conditions and loading histories on the properties of buckling andpostbuckling are discussed.  相似文献   
6.
The dynamic buckling and plastic collapse of elastic-plastic rectangular strips under axial slamming impact are investigated experimentally. The dynamic response of the specimens is measured by several back-to-back paris of strain gages located at different positions. According to the experimental records, the compressive and bending motions of the rectangular strips are analyzed. The strips exhibit three different critical dynamic conditions: buckling, plastic incipience and plastic collapse. Based on the response characters, three criteria are proposed which completely define the elastic-plastic dynamic behavior of rectangular strips under axial slamming impact with loading durations ranging from 14 to 18 milliseconds. These conditions are estimated by introducing three critical axial compressive strains. Moreover, the effect of geometric imperfection on the dynamic behavior of the strips is discussed.  相似文献   
7.
The local water slamming refers to the impact of a part of a ship hull on stationary water for a short duration during which high local pressures occur on the hull. We simulate slamming impact of rigid and deformable hull bottom panels by using the coupled Lagrangian and Eulerian formulation included in the commercial software LS-DYNA. We use the Lagrangian formulation to describe plane-strain deformations of the hull panel and consider geometric nonlinearities. The Eulerian formulation is used to analyze deformations of the water. Deformations of the hull panel and of the water are coupled through the hydrodynamic pressure exerted by water on the hull, and the velocity of particles on the hull wetted surface affecting deformations of the water. The continuity of surface tractions and the inter-penetrability of water into the hull are satisfied by using a penalty method. The computer code is verified by showing that the computed pressure distributions for water slamming on rigid panels agree well with those reported in the literature. The pressure distributions computed for deformable panels are found to differ from those obtained by using a plate theory and Wagner's slamming impact theory. We have also delineated jet flows near the edges of the wetted hull, and studied delamination induced in a sandwich composite panel due to the hydroelastic pressure.  相似文献   
8.
The phenomenon of hull-slamming, that is, the sudden impact of a solid body on the water surface, is critical in the design of naval structures. Thus, the development and validation of schemes to predict the slamming load and elucidate energy exchange during water entry are of fundamental importance in a wide range of engineering applications. Recent studies have demonstrated the possibility of using direct flow measurements from particle image velocimetry (PIV) to investigate the kinetics of water entry. Specifically, these efforts have contributed a first characterization of the hydrodynamic loading on impacting wedges and of the energy imparted to the water pile-up and the spray jets. Here, we seek to provide a thorough assessment of such a PIV-based approach through synthetic datasets, in which PIV parameters, such as the camera acquisition rate and the size of the interrogation area, are systematically varied, without experimental confounds. We implement a direct computational framework to study the two-dimensional flow physics generated during the water entry of a rigid wedge. Water and air are treated as immiscible phases and their relative motion is utilized to track the free surface dynamics. Our results show that the PIV-based methodology allows for an accurate reconstruction of the pressure field from the measured velocity field, except for early stages of the impact and for a small region close to the free surface. We also demonstrate that the reconstruction is only marginally affected by the spatial resolution, while a sufficiently high acquisition frequency is required to correctly predict the pressure field in the pile-up region. The proposed computational framework can also find application in the analysis of less studied aspects of water entry problems, such as cycling loading, flow transitions and separation, and formation of spray jets.  相似文献   
9.
In the present work, a new implementation of the Monotone Upwind‐centered Scheme for Conservation Laws (MUSCL) ‐ Hancock scheme has been developed for the SPH‐Arbitrary Lagrangian Eulerian (ALE) method. The resulting method was tested at various benchmark cases and then it was used to simulate the jet impingement on a flat plate for several different impingement angles, in comparison with the standard SPH method and results from literature. The SPH‐ALE method proves to produce higher quality results than the standard SPH method in all cases, while the MUSCL treatment tends to remedy the issues of the numerical viscosity, inherent to the method, up to a point. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
10.
Sloshing     
本文列举了诸多工程领域中的液体共振运动现象,详细探讨了船舱中伴有剧烈流动的晃荡问题.描述了基于理论分析的非线性多模态方法,该方法便于波动稳定性分区、多分支解和物理稳定性的研究.强调了方形舱、垂向圆柱舱以及球形舱内伴有旋转和混沌(不规则波动)的三维流动的重要性.晃荡引起的砰击涉及到各种各样的内流条件,这些条件随液体深度与舱体长度之比而变化.针对棱柱状LNG舱,讨论了许多与流体力学和热力学参数、影响砰击载荷效应的水弹性以及模型实验缩尺比的物理现象.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号