首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2351篇
  免费   416篇
  国内免费   67篇
化学   2169篇
晶体学   5篇
力学   47篇
综合类   4篇
数学   13篇
物理学   596篇
  2023年   48篇
  2022年   49篇
  2021年   79篇
  2020年   96篇
  2019年   109篇
  2018年   60篇
  2017年   105篇
  2016年   154篇
  2015年   169篇
  2014年   173篇
  2013年   237篇
  2012年   198篇
  2011年   172篇
  2010年   159篇
  2009年   131篇
  2008年   149篇
  2007年   136篇
  2006年   138篇
  2005年   102篇
  2004年   98篇
  2003年   67篇
  2002年   28篇
  2001年   19篇
  2000年   20篇
  1999年   25篇
  1998年   26篇
  1997年   17篇
  1996年   14篇
  1995年   16篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1982年   1篇
  1970年   1篇
排序方式: 共有2834条查询结果,搜索用时 15 毫秒
1.
《Mendeleev Communications》2022,32(4):520-522
Investigations of nanocomposite thin films based on polyarylene- phthalide, single-walled carbon nanotubes and graphene oxide have been carried out. Using these films as a transport layer, field-effect transistors were assembled and their output and transfer characteristics were measured. The mobility of charge carriers was estimated and the obtained values are as follows: μPAP/GO = 0.020 cm2 V?1 s?1 and μPAP/SWCNT = 0.071 cm2 V?1 s?1.  相似文献   
2.
Surface-tethered polymers are unique molecular architectures that have been recently used in advanced sensors, electronics and biomedical applications. However, techniques for characterizing these materials in their surface-tethered form remain limited. The incorporation of luminescent functionality into these materials has enabled new characterization methods, while also unlocking new applications in optoelectronics, stenography and sensing. Micron-scale photolithography techniques have recently enabled the preparation of high-resolution patterns, as well as architectures with unique photophysical properties. Herein, we provide an overview of the techniques used to prepare luminescent polymer brush materials and their applications in stimuli-responsive sensors, cell adhesion materials, and optoelectronics. We also provide our perspective on the promising future uses of surface-tethered polymers, as well as the short-term challenges and opportunities in the field.  相似文献   
3.
A new molecular dyad consisting of a Cy5 chromophore and ferrocene (Fc) and a triad consisting of Cy5, Fc, and β‐cyclodextrin (CD) are synthesized and their photophysical properties investigated at both the ensemble and single‐molecule levels. Hole transfer efficiency from Cy5 to Fc in the dyad is reduced upon addition of CD. This is due to an increase in the Cy5‐Fc separation (r) when the Fc is encapsulated in the macrocyclic host. On the other hand, the triad adopts either a Fc‐CD inclusion complex conformation in which hole transfer quenching of the Cy5 by Fc is minimal or a quasi‐static conformation with short r and rapid charge transfer. Single‐molecule fluorescence measurements reveal that r is lengthened when the triad molecules are deposited on a glass substrate. By combining intramolecular charge transfer and competitive supramolecular interaction, the triad acts as an efficient chemical sensor to detect different bioactive analytes such as amantadine hydrochloride and sodium lithocholate in aqueous solution and synthetic urine.  相似文献   
4.
5.
A new cosensitization photoelectrochemical (PEC) strategy was established by using a donor–acceptor-type photoactive material, poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7-Th), as a signal indicator, which was cosensitized with bis(4,4′dicarboxyl-2,2′-bipyridyl)(4,5,9,14-tetraazabenzo[b]triphenylene)ruthenium(II) ([Ru(dcbpy)2dppz]2+) embedded in the grooves of the DNA duplex and fullerene (nano-C60) immobilized on the surface of DNA nanoflowers for microRNA assay. [Ru(dcbpy)2dppz]2+ and nano-C60 could effectively enhance the photoelectric conversion efficiency (PCE) of PTB7-Th as a result of well-matched energy levels among nano-C60, [Ru(dcbpy)2dppz]2+ and PTB7-Th, leading to a clearly enhanced photocurrent signal. Meanwhile, a target recycling magnification technique based on duplex-specific nuclease was applied in this work to obtain higher detection sensitivity. The proposed biosensor demonstrated excellent analytical properties within a linear detection range of 2.5 fm to 2.5 nm and a limit of detection down to 0.83 fm . Impressively, this cosensitization PEC strategy offers an effective and convenient avenue to significantly improve the PCE of a photoactive material, resulting in a remarkably improved photocurrent signal for ultrasensitive and highly accurate detection of various targets.  相似文献   
6.
Semiconductor metal oxides (SMO)-based gas-sensing materials suffer from insufficient detection of a specific target gas. Reliable selectivity, high sensitivity, and rapid response–recovery times under various working conditions are the main requirements for optimal gas sensors. Chemical warfare agents (CWA) such as sarin are fatal inhibitors of acetylcholinesterase in the nerve system. So, sensing materials with high sensitivity and selectivity toward CWA are urgently needed. Herein, micro-nano octahedral Co3O4 functionalized with hexafluoroisopropanol (HFIP) were deposited on a layer of reduced graphene oxide (rGO) as a double-layer sensing materials. The Co3O4 micro-nano octahedra were synthesized by direct growth from electrospun fiber templates calcined in ambient air. The double-layer rGO/Co3O4-HFIP sensing materials presented high selectivity toward DMMP (sarin agent simulant, dimethyl methyl phosphonate) versus rGO/Co3O4 and Co3O4 sensors after the exposure to various gases owing to hydrogen bonding between the DMMP molecules and Co3O4-HFIP. The rGO/Co3O4-HFIP sensors showed high stability with a response signal around 11.8 toward 0.5 ppm DMMP at 125 °C, and more than 75 % of the initial response was maintained under a saturated humid environment (85 % relative humidity). These results prove that these double-layer inorganic–organic composite sensing materials are excellent candidates to serve as optimal gas-sensing materials.  相似文献   
7.
Water-soluble donor–acceptor-type fluorophore 15Nap-Cl having two trifluoromethyl groups and a Cl group on a 1,5-aminonaphthyridine framework was prepared. Fluorophore 15Nap-Cl showed strong solvatochromic fluorescence, and, as the solvent polarity increased, a bathochromic shift was observed accompanied by an increase in the fluorescence quantum yield. In addition, in the presence of amines such as ethylamine, diethylamine, and aniline, further considerable bathochromic shifts in the fluorescence were observed. Density functional calculations identified the source of the fluorescence behavior as exciplex formation between 15-Nap-Cl and the corresponding amine. The fluorescence behavior was exploited to fabricate a sensor that can identify various primary, secondary, and tertiary amines.  相似文献   
8.
Herein, we report two novel derivatives of hexabenzoperylene (HBP) that are functionalized with ester groups. Methyl acetate functionalized HBP ( 1 ) in single crystals self‐assembles into a supramolecular nanosheet, which has a two‐dimensional π‐stack of HBP sandwiched between two layers of ester groups. With the same self‐assembly motif, active ester‐functionalized HBP ( 2 ) in field effect transistors has enabled differentiation of tertiary amines from primary and secondary amines, in agreement with the fact that active ester reacts with primary and secondary amines but not with tertiary amines to form amides.  相似文献   
9.
Devising sensors for the perrhenate anion in aqueous media is extremely challenging, and has seldom been reported in the literature. Herein, we report a fluorescence turn-on sensor for the perrhenate anion in aqueous media based on the aggregation-induced emission of a popular ultrafast molecular rotor dye, Thioflavin-T. The selective response towards the perrhenate anion has been rationalized in terms of matching water affinity, with the weakly hydrated perrhenate anion spontaneously forming a contact ion pair with the weakly hydrated ultrafast molecule-rotor-based organic cation, Thioflavin-T, which in turn leads to an aggregate assembly that provides a fluorescence turn-on response towards perrhenate. The sensing response of Thioflavin-T has been found to be quite selective towards the perrhenate anion when tested against anions that are ubiquitously present in the environment, such as chloride, nitrate, and sulfate anions. The formation of self-assembled Thioflavin-T aggregates has also been investigated by time-resolved emission and temperature-dependent measurements.  相似文献   
10.
《Comptes Rendus Physique》2019,20(3):204-217
Disaster relief requires many resources. Depending on the circumstances of each event, it is important to rapidly choose the suitable means to respond to the emergency intervention. A brief review of the conditions and means demonstrated the usefulness of an autonomous stand-alone machine for these missions. If many techniques and technologies exist, their relevant combination to achieve such a system presents several challenges. This communication tries to outline the possible achievement of an autonomous vehicle under these particular circumstances. This paper focuses on the specific working conditions and welcomes future contributions from robotics and artificial intelligence.In the necessarily limited scope of this article, the authors focus on a particularly critical aspect: location. Indeed, this machine is intended to evolve in heterogeneous and dangerous environment and without any outside contacts that could last up to several days. This blackout, due to the propagation difficulties of electromagnetic waves in the ground, induces an independence of the localisation process and makes the use of any radio navigation support system (GNSS), most of the time, impossible. The knowledge of the position of the system, both for navigation of the autonomous system (Rover) and location of targets (victims buried under debris) must be able to be estimated without contributions from external systems. Inertial classical techniques, odometer, etc., have to be adapted to these conditions during a long period without external support. These techniques also have to take into account that energy optimisation requests the use of low-power processors. Consequently, only poor computing capacity is available on-board.The article starts with a presentation of the context of a post-disaster situation as well as the main missions of Search and Rescue (SaR). It is followed by the analysis of autonomous navigation located in a post-earthquake situation. We will then discuss means to determine the attitude of the autonomous system and its position. The interest of hybridisation with external systems – whenever possible –, will be evaluated with a view to correcting deviations suffered by the system during its mission. Finally, prospects and future work are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号