首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   13篇
  国内免费   18篇
化学   116篇
力学   37篇
综合类   1篇
数学   9篇
物理学   58篇
  2023年   1篇
  2022年   6篇
  2021年   12篇
  2020年   23篇
  2019年   8篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   4篇
  2014年   8篇
  2013年   34篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   6篇
  2006年   5篇
  2005年   12篇
  2004年   8篇
  2003年   8篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
排序方式: 共有221条查询结果,搜索用时 46 毫秒
1.
Sodium metal anodes have attracted significant attention due to their high specific capacity,low redox potential and abundant resources.However,the dendrites and unstable solid electrolyte interphase(SEI)of sodium anodes restrict the development of sodium metal batteries.This review includes the recent progress on the Na anode protection in sodium metal batteries.The strategies are summarized as modified three-dimensional current collectors,artificial solid electrolyte interphases,and electrolyte modifications.Conclusions and perspectives are envisaged for the further understanding and development of Na metal anodes.  相似文献   
2.
Mechanical properties of hybrid PMMA composites reinforced with UHMWPE fiber and nano‐titanium dioxide (2, 4, 6, and 8 wt%) was investigated. In this work, the effect of UHMWPE fiber surface treatment on tensile, flexural, and impact properties of PMMA composites was studied. The fiber loadings were varied from 0% to 20%. The addition of UHMWPE fiber had caused a decline in the tensile strength of the PMMA composite. Results revealed that the presence of titanium dioxide on the surface treated UHMWPE fiber has further enhanced the efficiency of stress transfer from the matrix to the fiber thus improved the interfacial adhesion between the UHMWPE fiber and PMMA matrix.  相似文献   
3.
The individual compounds in an emulsion of tartaric acid stabilized by a commercial surfactant, Laureth 4, were brought into contact in order to estimate the deviation from equilibrium conditions during emulsion evaporation. The transfer of compounds between the phases was followed by visual observation of new phases appearing and the movement of the interfaces with time. The results revealed that, conversely to the equilibrium processes in the corresponding salicylate emulsions, in the present system the dissolution of the acid was faster than the formation of birefringent structures and the variation of different colloidal structures could be followed in the experiment. A suitable choice of initial ratio between the three compounds enabled the transfer of compounds to result in an early depletion of the solid acid and subsequently information could be obtained about the relation between the transport of surfactant and water-acid solution into the birefringent layer. A significant dependence was found between the composition of the entrants into the layer and the amount of surfactant liquid remaining.  相似文献   
4.
Lithium-ion batteries have dominated the energy market from portable electronic devices to electric vehicles. However, the LIBs applications are limited seriously when they were operated in the cold regions and seasons if there is no thermal protection. This is because the Li+ transportation capability within the electrode and particularly in the electrolyte dropped significantly due to the decreased electrolyte liquidity, leading to a sudden decline in performance and short cycle-life. Thus, design a low-temperature electrolyte becomes ever more important to enable the further applications of LIBs. Herein, we summarize the low-temperature electrolyte development from the aspects of solvent, salt, additives, electrolyte analysis, and performance in the different battery systems. Then, we also introduce the recent new insight about the cation solvation structure, which is significant to understand the interfacial behaviors at the low temperature, aiming to guide the design of a low-temperature electrolyte more effectively.  相似文献   
5.
In the present study, a specific type of reinforcing resin behavior is investigated using various mechanical approaches as well as microscopic techniques such as transmission electron microscopy and atomic force microscopy. Based on these observations, it could be concluded that the reinforcing resin introduces a synergistic effect with carbon black in order to strengthen the system. This is implied since the percolation threshold is significantly reduced and the morphology of the filler aggregates changes toward higher compactness, i.e., an increase of volume-to-size ratio with the addition of resin.  相似文献   
6.
宽线固体核磁共振氢谱(1H NMR)是一种研究半晶高分子相结构的经典方法.本文以半晶聚乙烯的宽线固体1H NMR谱为例,探讨了通过Gaussian/Sinc、Gaussian和Lorentzian函数组合对宽线固体1H NMR谱图进行拟合的方案,并根据半晶聚乙烯的相结构成分对拟合得到的各信号成分进行归属.并在此基础上探讨了各个相结构中分子链运动与信号线型的相关性,以及利用宽线固体1H NMR谱测量半晶高分子结晶度存在的困难.  相似文献   
7.
Polymeric self-consistent field theory is used to investigate microstructures and interphase properties of diblock copolymers grafted onto solid surfaces in a homopolymer melt. The calculations show that the grafted diblock copolymers can self-assemble into hemispherical microstructures at low grafting densities of the diblock copolymers. The morphology transforms into hemicylinder-like and sandwich-like lamellar microstructures with an increase in the chain-grafting density. The effective thickness of the grafted block layer and the interphase width between the homopolymer melt and the grafted copolymers strongly depend on the physicochemical parameters of the system, such as the composition of the grafted copolymer, the chemical incompatibility between the different components, the length ratio of grafted copolymer to homopolymer, and the grafting density of the diblock copolymers. In addition, the above computational results of microphase-separated structures and interphase properties are qualitatively compared with our previous experimental observations. The comparison indicates that our theoretical results not only reproduce the general feature of the experimental observations, but also elucidate the internal structural information and complement the findings in the region of high grafting densities of diblock copolymers.  相似文献   
8.
Stable operation at elevated temperature is necessary for lithium metal anode. However, Li metal anode generally has poor performance and safety concerns at high temperature (>55 °C) owing to the thermal instability of the electrolyte and solid electrolyte interphase in a routine liquid electrolyte. Herein a Li metal anode working at an elevated temperature (90 °C) is demonstrated in a thermotolerant electrolyte. In a Li|LiFePO4 battery working at 90 °C, the anode undergoes 100 cycles compared with 10 cycles in a practical carbonate electrolyte. During the formation of the solid electrolyte interphase, independent and incomplete decomposition of Li salts and solvents aggravate. Some unstable intermediates emerge at 90 °C, degenerating the uniformity of Li deposition. This work not only demonstrates a working Li metal anode at 90 °C, but also provides fundamental understanding of solid electrolyte interphase and Li deposition at elevated temperature for rechargeable batteries.  相似文献   
9.
Despite the exceptionally high energy density of lithium metal anodes, the practical application of lithium‐metal batteries (LMBs) is still impeded by the instability of the interphase between the lithium metal and the electrolyte. To formulate a functional electrolyte system that can stabilize the lithium‐metal anode, the solvation behavior of the solvent molecules must be understood because the electrochemical properties of a solvent can be heavily influenced by its solvation status. We unambiguously demonstrated the solvation rule for the solid‐electrolyte interphase (SEI) enabler in an electrolyte system. In this study, fluoroethylene carbonate was used as the SEI enabler due to its ability to form a robust SEI on the lithium metal surface, allowing relatively stable LMB cycling. The results revealed that the solvation number of fluoroethylene carbonate must be ≥1 to ensure the formation of a stable SEI in which the sacrificial reduction of the SEI enabler subsequently leads to the stable cycling of LMBs.  相似文献   
10.
As the power supply of the prosperous new energy products, advanced lithium ion batteries (LIBs) are widely applied to portable energy equipment and large‐scale energy storage systems. To broaden the applicable range, considerable endeavours have been devoted towards improving the energy and power density of LIBs. However, the side reaction caused by the close contact between the electrode (particularly the cathode) and the electrolyte leads to capacity decay and structural degradation, which is a tricky problem to be solved. In order to overcome this obstacle, the researchers focused their attention on electrolyte additives. By adding additives to the electrolyte, the construction of a stable cathode‐electrolyte interphase (CEI) between the cathode and the electrolyte has been proven to competently elevate the overall electrochemical performance of LIBs. However, how to choose electrolyte additives that match different cathode systems ideally to achieve stable CEI layer construction and high‐performance LIBs is still in the stage of repeated experiments and exploration. This article specifically introduces the working mechanism of diverse electrolyte additives for forming a stable CEI layer and summarizes the latest research progress in the application of electrolyte additives for LIBs with diverse cathode materials. Finally, we tentatively set forth recommendations on the screening and customization of ideal additives required for the construction of robust CEI layer in LIBs. We believe this minireview will have a certain reference value for the design and construction of stable CEI layer to realize desirable performance of LIBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号