首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   20篇
  国内免费   23篇
化学   46篇
力学   18篇
综合类   2篇
数学   51篇
物理学   175篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   14篇
  2019年   9篇
  2018年   12篇
  2017年   7篇
  2016年   11篇
  2015年   5篇
  2014年   5篇
  2013年   17篇
  2012年   3篇
  2011年   11篇
  2010年   11篇
  2009年   6篇
  2008年   10篇
  2007年   11篇
  2006年   11篇
  2005年   17篇
  2004年   10篇
  2003年   8篇
  2002年   13篇
  2001年   12篇
  2000年   9篇
  1999年   14篇
  1998年   7篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1989年   7篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有292条查询结果,搜索用时 31 毫秒
1.
The development of chemical intuition in photochemistry faces several difficulties that result from the inadequacy of the one-particle picture, the Born–Oppenheimer approximation, and other basic ideas used to build models. It is shown herein how real-space approaches can be efficiently used to gain valuable insights in photochemistry through a simple example of red and blue shift effects: the double hypso- and bathochromic shifts in the low-lying valence excited states of (H2O)2. It is demonstrated that 1) the use of these techniques allows the perturbative language used in the theory of intermolecular interactions, even in the strongly interacting short-range regime, to be maintained; 2) one and only one molecule is photoexcited in each of the addressed excited states and 3) the electrostatic interaction between the in-the-cluster molecular dipoles provides a fairly intuitive rationalisation of the observed batho- and hypsochromism. The methods exploited and illustrated herein are able to maintain the individuality and properties of the interacting entities in a molecular aggregate, and thereby they allow chemical intuition in general states, at any geometry and using a broad variety of electronic structure methods to be kept and built.  相似文献   
2.
《Comptes Rendus Physique》2018,19(6):433-450
We review recent theoretical developments on the stabilization of strongly correlated quantum fluids of light in driven-dissipative photonic devices through novel non-Markovian reservoir engineering techniques. This approach allows one to compensate losses and refill selectively the photonic population so as to sustain a desired steady state. It relies in particular on the use of a frequency-dependent incoherent pump, which can be implemented, e.g., via embedded two-level systems maintained at a strong inversion of population. As specific applications of these methods, we discuss the generation of Mott Insulator (MI) and Fractional Quantum Hall (FQH) states of light. As a first step, we present the case of a narrowband emission spectrum and show how this allows for the stabilization of MI and FQH states under the condition that the photonic states are relatively flat in energy. As soon as the photonic bandbwidth becomes comparable to the emission linewidth, important non-equilibrium signatures and entropy generation appear, and a novel dissipative phase transition from a Mott Insulating state toward a superfluid (SF) phase is unveiled. As a second step, we review a more advanced configuration based on reservoirs with a broadband frequency distribution, and we highlight the potential of this configuration for the quantum simulation of equilibrium quantum phases at zero temperature with tunable chemical potential. As a proof of principle, we establish the applicability of our scheme to the Bose–Hubbard model by confirming the presence of a perfect agreement with the ground-state predictions both in the Mott insulating and superfluid regions, and more generally in all parts of the parameter space. Future prospects towards the quantum simulation of more complex configurations are finally outlined, along with a discussion of our scheme as a concrete realization of quantum annealing.  相似文献   
3.
We present a theoretical study of fractional quantum Hall physics in a rotating gas of strongly interacting photons in a single cavity with a large optical nonlinearity. Photons are injected into the cavity by a Laguerre–Gauss laser beam with a non-zero orbital angular momentum. The Laughlin-like few-photon eigenstates appear as sharp resonances in the transmission spectra. Using additional localized repulsive potentials, quasi-holes can be created in the photon gas and then braided around in space: an unambiguous signature of the many-body Berry phase under exchange of two quasi-holes is observed as a spectral shift of the corresponding transmission resonance.  相似文献   
4.
In this paper we obtain a time-uniform propagation estimate for a system of interacting diffusion processes. Using a well defined metric function h , our result guarantees a time-uniform estimate for the convergence of a class of interacting stochastic differential equations towards their mean field limit, under conditions that ensure that the decay associated to the internal dynamics term dominates the interaction and noise terms. Our result should have diverse applications, particularly in neuroscience, and allows for models more elaborate than the one of Wilson and Cowan. In particular, the internal dynamics need not be that of linear decay.  相似文献   
5.
In this paper,we make a comparison for the impacts of smooth dynamical dark energy,modified gravity,and interacting dark energy on the cosmological constraints on the total mass of active neutrinos.For definiteness,we consider theΛCDM model,the w CDM model,the f(R)model,and two typical interacting vacuum energy models,i.e.,the IΛCDM1 model with Q=βHρc and the IΛCDM2 model with Q=βHρΛ.In the cosmological fits,we use the Planck 2015 temperature and polarization data,in combination with other low-redshift observations including the baryon acoustic oscillations,the type Ia supernovae,the Hubble constant measurement,and the large-scale structure observations,such as the weak lensing as well as the redshift-space distortions.Besides,the Planck lensing measurement is also employed in this work.We find that,the w CDM model favors a higher upper limit on the neutrino mass compared to theΛCDM model,while the upper limit in the f(R)model is similar with that in theΛCDM model.For the interacting vacuum energy models,the IΛCDM1 model favors a higher upper limit on neutrino mass,while the IΛCDM2 model favors an identical neutrino mass with the case ofΛCDM.  相似文献   
6.
Interacting Boson Model-2(IBM-2)is used to determine the Hamiltonian for Er nuclei.Fit values of parameters are used to construct the Hamiltonian,energy levels and electromagnetic transitions(B(E2),B(M1))multipole mixing ratios(δ(E2/M1))for some even-even Er nuclei and monopole transition probability are estimated.New ideas are used for counting bosons number at N=64 and results are compared with previous works.  相似文献   
7.
Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18 , 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih). The strongest HBs within H2O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2O clusters.  相似文献   
8.
利用提升小波从蛋白质序列中提取出它们相互作用的频谱特征,经支持向量机训练学习后,用于预测蛋白质间的相互作用.模拟计算结果表明,在阳性数据和阴性数据平衡的前提下,利用提升小波获取的低维蛋白质相互作用特征向量可以得到较高预测精度.进一步阐述了不同物种的蛋白质相互作用网络有着不同特征,为了得到更准确的预测结果,需要利用不同的方法提取蛋白质相互作用的特征.  相似文献   
9.
袁都奇 《物理学报》2011,60(3):30307-030307
根据Thomas-Fermi近似,在基于最小动量态上玻色-爱因斯坦凝聚的前提下,研究了囚禁弱相互作用玻色气体势场的最优化问题.导出了指数吸引势阱中有效势场和粒子数极限判据,粒子数给定时,可由此判据求出所需势场强度;势场强度给定时,可由此判据求出粒子数极限.根据吸引相互作用系统的稳定性以及求出的排斥相互作用的最大粒子数极限,结合有效势场判据,分别给出了囚禁吸引和排斥相互作用玻色气体时,势场强度的最佳取值范围. 关键词: 玻色-爱因斯坦凝聚 弱相互作用 粒子数极限 势场强度  相似文献   
10.
In cities, flood waves may propagate over street surfaces below which lie complicated pipe networks used for storm drainage and sewage. The flood and pipe flows can interact at connections between the underground pipes and the street surface. The present paper examines this interaction, using the shallow water equations to model the flood wave hydrodynamics. Sources and sinks in the mass conservation equation are used to model the pipe inflow and outflow conditions at bed connections. We consider the problem reduced to one dimension. The shallow water equations are solved using a Godunov‐type wave propagation scheme. Wave speeds are modified in the wave propagation algorithm to enable flows to be simulated over nearly dry beds and dry states. First, the model is used to simulate vertical flows through finite gaps in the bed. Next, the interaction of the vertical flows with a dam break flow is considered for both dry and wet beds. An efflux number, En, is defined based on the vertical efflux velocity and the gap length. Comparisons are made with numerical predictions from STAR‐CD, a commercial Navier–Stokes solver that models the free‐surface motions, and a parameter study is undertaken to investigate the effect of the one‐dimensional approximation of the present model, for a range of non‐dimensional efflux numbers. It is found that the shallow flow model gives sensible predictions at all time provided En<0.5, and for long durations for En>0.5. Dam break flow over an underground connecting pipe is also considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号