首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   3篇
  国内免费   3篇
力学   158篇
数学   15篇
物理学   12篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   16篇
  2019年   6篇
  2018年   3篇
  2017年   2篇
  2016年   14篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   6篇
  2011年   11篇
  2010年   6篇
  2009年   10篇
  2008年   5篇
  2007年   7篇
  2006年   7篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1982年   2篇
  1979年   1篇
  1957年   1篇
排序方式: 共有185条查询结果,搜索用时 93 毫秒
1.
The generalized aerodynamic force (GAF) matrix is derived for the Unsteady Vortex Lattice Method (UVLM) without the assumption of out-of-plane dynamics. As a result, the approach naturally includes in-plane motion and forces unlike the doublet lattice method (DLM). The derived UVLM GAF is therefore applicable to industry-standard techniques for aeroelastic stability analyses, such as the p–k method. In this work, the fluid–structure interpolation is performed with radial basis functions for surface interpolation. The generalized aerodynamic forces computed with the UVLM are verified against the DLM from NASTRAN on a simple flat plate configuration. The ability of the UVLM to include steady loads is verified with a T-tail flutter case and the results confirm the importance of including steady loads for T-tail flutter analysis. The modal frequency domain VLM therefore provides the same level of efficiency and accuracy than the DLM, but without the restrictions and with the ability to handle complex geometries. It is therefore a viable replacement to the DLM.  相似文献   
2.
胡寒  聂国隽 《力学季刊》2020,41(1):69-79
假设纤维方向角沿层合板的长度方向线性变化,研究了变角度纤维复合材料层合斜板的颤振.通过坐标变换将斜板变换为正方形板,采用层合板表面连续变化的速度环量来模拟空气对其的作用,速度环量分布利用Cauchy积分公式计算.建立了系统的Lagrange方程并采用Ritz法得到了层合板的自振频率和颤振/不稳定性分离临界速度.通过数值算例验证了本文模型和方法的正确性和收敛性,分析了各个铺层内纤维方向角的变化对自振频率和颤振/不稳定性分离临界速度的影响.研究结果表明,通过纤维的变角度铺设,可有效地提高层合板的基频和颤振/不稳定性分离临界速度.经合理设计的变角度复合材料层合板具有抑制颤振的作用.  相似文献   
3.
The present paper investigates the fluid–structure interaction (FSI) of a wing with two degrees of freedom (DOF), i.e., pitch and heave, in the transitional Reynolds number regime. This 2-DOF setup marks a classic configuration in aeroelasticity to demonstrate flutter stability of wings. In the past, mainly analytic approaches have been developed to investigate this challenging problem under simplifying assumptions such as potential flow. Although the classical theory offers satisfying results for certain cases, modern numerical simulations based on fully coupled approaches, which are more generally applicable and powerful, are still rarely found. Thus, the aim of this paper is to provide appropriate experimental reference data for well-defined configurations under clear operating conditions. In a follow-up contribution these will be used to demonstrate the capability of modern simulation techniques to capture instantaneous physical phenomena such as flutter. The measurements in a wind tunnel are carried out based on digital-image correlation (DIC). The investigated setup consists of a straight wing using a symmetric NACA 0012 airfoil. For the experiments the model is mounted into a frame by means of bending and torsional springs imitating the elastic behavior of the wing. Three different configurations of the wing possessing a fixed elastic axis are considered. For this purpose, the center of gravity is shifted along the chord line of the airfoil influencing the flutter stability of the setup. Still air free-oscillation tests are used to determine characteristic properties of the unloaded system (e.g. mass moment of inertia and damping ratios) for one (pitch or heave) and two degrees (pitch and heave) of freedom. The investigations on the coupled 2-DOF system in the wind tunnel are performed in an overall chord Reynolds number range of 9.66×103Re8.77×104. The effect of the fluid-load induced damping is studied for the three configurations. Furthermore, the cases of limit-cycle oscillation (LCO) as well as diverging flutter motion of the wing are characterized in detail. In addition to the DIC measurements, hot-film measurements of the wake flow for the rigid and the oscillating airfoil are presented in order to distinguish effects originating from the flow and the structure.  相似文献   
4.
高速飞行器壁板颤振的分析模型和分析方法   总被引:13,自引:0,他引:13  
壁板颤振是壁板结构在高速气流中产生的一种自激振动,在超声速和高超声速飞行器上特别容易发生这种现象。壁板颤振引发的非线性振动将对高速飞行器结构的疲劳强度、飞行性能和飞行安全带来不利的影响。随着高速飞行器设计中各项研究工作的开展,壁板颤振问题受到了到越来越多的重视。本文阐述了目前国内外学者在高速飞行器壁板颤振分析领域的研究现状及壁板颤振研究中常用的六种分析模型,并根据壁板颤振分析中使用的结构理论和气动力理论,详述了这种分类的依据。文中还介绍了温度、气流偏角、壁板几何尺寸及边界条件对壁板颤振的影响规律和目前常用于分析壁板颤振问题的频域和时域方法,总结了各种分析方法的优缺点。最后归纳了目前在高速飞行器壁板颤振研究中得出的几个重要结论,提出了今后在高速飞行器壁板颤振研究中需要解决的若干问题。  相似文献   
5.
Higher order elements were first design for linear problems where, in certain situations, they present advantages over the lower order elements. A method to efficiently extend their use to geometrical nonlinear problems as panel flutter and postbuckling behavior is presented. The chaotic and limit-cycle oscillations of an isotropic plate are obtained based on direct integration of the discretized equation of motion. The plate is modeled using the von Karman theory and the geometrical nonlinearities are separated in a nonlinear term of the first kind which manifests especially in the prebuckling and buckling regimes, and a nonlinear term of the second kind which is responsible for the postbuckling behavior. A fifth order, fully compatible element has been used to model thin plates while the inplane loads where introduced through a membrane element. The aerodynamics was modeled using the first order 'piston theory. The method introduces the concept of a deteriorated form of the second geometric matrix which is equivalent to neglecting higher order terms in the strain energy of the plate. This allows for a drastic reduction in the computational effort with no observable loss of accuracy. Well established results in the literature are used to validate the method.  相似文献   
6.
飞行器跨声速气动弹性数值分析   总被引:4,自引:1,他引:4  
杨国伟  钱卫 《力学学报》2005,37(6):769-776
将流体和结构运动方程分别构造为含子迭代的计算格式,发展了一种紧耦合气动弹性分析方法.其中流体计算的空间离散采用改进的HLLEW(Harten—Lax-van Leer-Einfeldt-Wada)格式. TFI(transfinite inter- polation)方法用于生成随结构变形的自适应多块动网格.利用所发展的方法,对-翼-身-尾气动外形,数值预测了马赫数在0.3-1.3范围内的气动颤振边界.并详细研究了时间步长、子迭代步数、初始流场、耦合方法、疏密网格对颤振计算结果的影响.  相似文献   
7.
Fluid Flow-Induced Nonlinear Vibration of Suspended Cables   总被引:2,自引:0,他引:2  
Chang  W. K.  Pilipchuk  V.  Ibrahim  R. A. 《Nonlinear dynamics》1997,14(4):377-406
The nonlinear interaction of the first two in-plane modes of a suspended cable with a moving fluid along the plane of the cable is studied. The governing equations of motion for two-mode interaction are derived on the basis of a general continuum model. The interaction causes the modal differential equations of the cable to be non-self-adjoint. As the flow speed increases above a certain critical value, the cable experiences oscillatory motion similar to the flutter of aeroelastic structures. A co-ordinate transformation in terms of the transverse and stretching motions of the cable is introduced to reduce the two nonlinearly coupled differential equations into a linear ordinary differential equation governing the stretching motion, and a strongly nonlinear differential equation for the transverse motion. For small values of the gravity-to-stiffness ratio the dynamics of the cable is examined using a two-time-scale approach. Numerical integration of the modal equations shows that the cable experiences stretching oscillations only when the flow speed exceeds a certain level. Above this level both stretching and transverse motions take place. The influences of system parameters such as gravity-to-stiffness ratio and density ratio on the response characteristics are also reported.  相似文献   
8.
本文利用数字仿真技术,对结构非线性颤振半主动抑制-颤振驯化方案进行了探讨,仿真结果表明,对于一定的结构非线性类型和参数,利用非线性颤振的极限环特性,可使系统的颤振响应被抑制在幅值很小的稳定域内,从而达到减缓颤振的目的。  相似文献   
9.
Chaotic Analysis of Nonlinear Viscoelastic Panel Flutter in Supersonic Flow   总被引:2,自引:0,他引:2  
In this paper chaotic behavior of nonlinear viscoelastic panels in asupersonic flow is investigated. The governing equations, based on vonKàarmàn's large deflection theory of isotropic flat plates, areconsidered with viscoelastic structural damping of Kelvin's modelincluded. Quasi-steady aerodynamic panel loadings are determined usingpiston theory. The effect of constant axial loading in the panel middlesurface and static pressure differential have also been included in thegoverning equation. The panel nonlinear partial differential equation istransformed into a set of nonlinear ordinary differential equationsthrough a Galerkin approach. The resulting system of equations is solvedthrough the fourth and fifth-order Runge–Kutta–Fehlberg (RKF-45)integration method. Static (divergence) and Hopf (flutter) bifurcationboundaries are presented for various levels of viscoelastic structuraldamping. Despite the deterministic nature of the system of equations,the dynamic panel response can become random-like. Chaotic analysis isperformed using several conventional criteria. Results are indicative ofthe important influence of structural damping on the domain of chaoticregion.  相似文献   
10.
The influence of maneuvering on the chaotic response of a fluttering buckled plate on an aircraft has been studied. The governing equations, derived using Lagrangian mechanics, include geometric non-linearities associated with the occurrence of tensile stresses, as well as coupling between the angular velocity of the maneuver and the elastic degrees of freedom. Numerical simulation for periodic and chaotic responses are conducted in order to analyze the influence of the pull-up maneuver on the dynamic behavior of the panel. Long-time histories phase-plane plots, and power spectra of the responses are presented. As the maneuver (load factor) increases, the system exhibits complicated dynamic behavior including a direct and inverse cascade of subharmonic bifurcations, intermittency, and chaos. Beside these classical routes of transition from a periodic state to chaos, our calculations suggest amplitude modulation as a possible new mode of transition to chaos. Consequently this research contributes to the understanding of the mechanisms through which the transition between periodic and strange attractors occurs in, dissipative mechanical systems. In the case of a prescribed time dependent maneuver, a remarkable transition between the different types of limit cycles is presented.Nomenclature a plate length - a r u r /h - D plate bending stiffness - E modulus of elasticity - g acceleration due to gravity - h plate thickness - j1,j2,j3 base vectors of the body frame of reference - K spring constant - M Mach number - n 1 + 0/g - N 1 applied in-plane force - pp aerodynamic pressure - P pa 4/Dh - q 0/2 - Q r generalized Lagrangian forces - R rotation matrix - R 4 N, a 2/D - t time - kinetic energy - u plate deflection - u displacement of the structure - u r modal amplitude - v0 velocity - x coordinates in the inertial frame of reference - z coordinates in the body frame of reference - Ka/(Ka+Eh) - - elastic energy - 2qa 3/D - a/mh - Poisson's ratio - material coordinates - air density - m plate density - - r prescribed functions - r sin(r z/a) - angular velocity - a/v0 - skew-symmetric matrix form of the angular velocity  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号