首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1687篇
  免费   355篇
  国内免费   278篇
化学   1581篇
晶体学   7篇
力学   1篇
综合类   7篇
数学   5篇
物理学   719篇
  2023年   28篇
  2022年   51篇
  2021年   69篇
  2020年   80篇
  2019年   78篇
  2018年   80篇
  2017年   77篇
  2016年   109篇
  2015年   99篇
  2014年   92篇
  2013年   132篇
  2012年   100篇
  2011年   110篇
  2010年   110篇
  2009年   126篇
  2008年   112篇
  2007年   127篇
  2006年   108篇
  2005年   98篇
  2004年   92篇
  2003年   79篇
  2002年   61篇
  2001年   56篇
  2000年   44篇
  1999年   24篇
  1998年   23篇
  1997年   23篇
  1996年   20篇
  1995年   13篇
  1994年   16篇
  1993年   17篇
  1992年   9篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   4篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有2320条查询结果,搜索用时 31 毫秒
1.
Zhengran Wang 《中国物理 B》2022,31(4):48202-048202
Excited-state double proton transfer (ESDPT) in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol (HYDRAVH2) ligand was studied by the density functional theory and time-dependent density functional theory method. The analysis of frontier molecular orbitals, infrared spectra, and non-covalent interactions have cross-validated that the asymmetric structure has an influence on the proton transfer, which makes the proton transfer ability of the two hydrogen protons different. The potential energy surfaces in both S0 and S1 states were scanned with varying O-H bond lengths. The results of potential energy surface analysis adequately proved that the HYDRAVH2 can undergo the ESDPT process in the S1 state and the double proton transfer process is a stepwise proton transfer mechanism. Our work can pave the way towards the design and synthesis of new molecules.  相似文献   
2.
Predicting the fragmentation patterns of proteins would be beneficial for the reliable identification of intact proteins by mass spectrometry. However, the ability to accurately make such predictions remains elusive. An approach to predict the specific cleavage sites in whole proteins resulting from collision-induced dissociation by use of an improved electrostatic model for calculating the proton configurations of highly-charged protein ions is reported. Using ubiquitin, cytochrome c, lysozyme and β-lactoglobulin as prototypical proteins, this approach can be used to predict the fragmentation patterns of intact proteins. For sufficiently highly charged proteins, specific cleavages occur near the first low-basicity amino acid residues that are protonated with increasing charge state. Hybrid QM/QM′ (QM=quantum mechanics) and molecular dynamics (MD) simulations and energy-resolved collision-induced dissociation measurements indicated that the barrier to the specific dissociation of the protonated amide backbone bond is significantly lower than competitive charge remote fragmentation. Unlike highly charged peptides, the protons at low-basicity sites in highly charged protein ions can be confined to a limited sequence of low-basicity amino acid residues by electrostatic repulsion, which results in highly specific fragmentation near the site of protonation. This research suggests that the optimal charge states to form specific sequence ions of intact proteins in higher abundances than the use of less specific ion dissociation methods can be predicted a priori.  相似文献   
3.
4.
The design of new solid-state proton-conducting materials is a great challenge for chemistry and materials science. Herein, a new anionic porphyrinylphosphonate-based MOF ( IPCE-1Ni ), which involves dimethylammonium (DMA) cations for charge compensation, is reported. As a result of its unique structure, IPCE-1Ni exhibits one of the highest value of the proton conductivity among reported proton-conducting MOF materials based on porphyrins (1.55×10−3 S cm−1 at 75 °C and 80 % relative humidity).  相似文献   
5.
高强度聚焦超声(HIFU)是一种无创的热消融疗法,为保证其安全性和有效性,需要一种精度高、速度快的测温方法在其治疗过程中对温度进行监控.基于质子共振频率位移(PRFS)的磁共振温度成像(MRT)对温度具有较高的灵敏度,且与温度具有良好的线性关系,因此常被用于引导HIFU治疗.然而在实际应用中,HIFU治疗的最大隐患在于可能造成表皮灼伤,并且灼伤区域可能与焦点区域相隔较远.因此MRT的监控范围十分重要.本文基于三维回波平移成像序列,结合可控混叠的空间并行成像技术,实现了时间分辨率为3 s的快速三维温度成像.为了验证该方法的精度,本文首先设计了仿体降温实验,利用光纤温度计验证回波平移序列测温的准确度和精确度.然后在室温条件下扫描离体猪肉组织,对比加速前后的MRT的测温精确度.在HIFU加热条件下扫描离体猪肉组织,对比加速前后的MRT的测温准确度.结果显示,本文提出的方法可以在3 s内完成三维温度精准测量,对于HIFU治疗的安全监控具有重要意义.  相似文献   
6.
The low-cost, high specific surface area and porosity, controlled pore size, and chemical properties of metal–organic framework (MOF) materials have attracted much attention in the exploration of proton conduction. The method of chemically modifying MOF structures or introducing conductive medium into the holes can effectively improve the proton conductivities of the materials. Here, the structural tunability of ionic liquid (IL) and flexible MOF (fle-MOF) materials are matched to give full play to the conductivity of IL, the framework support, and the microporous effect of MOFs, which achieves the synergistic effect of performance and expands the temperature range of proton transfer. Three kinds of CS/IL@fle-MOF membranes were prepared by combining three fle-MOFs with 1-carboxymethyl-3-methylimidazole (CMMIM) in different proportions to obtain 15 pieces of membranes. The comparative analyses show that CS/IL@fle-MOF membranes have excellent proton conduction performance at a wider temperature range (263–353 K) and lower relative humidity (75% RH). Among them, the proton conductivities of CS/CMMIM@MIL-88A-25% and CS/CMMIM@MIL-88B-125% are up to 1.33 and 1.42 S cm−1 at 75% RH and 353 K, respectively; whereas those of CS/CMMIM@MIL-53(Fe)-75% and CS/CMMIM@MIL-88B-125% reach up to 2.1 × 10−3 and 1.28 × 10−3 S cm−1 at 75% RH and 263 K, respectively. The Ea of CS/CMMIM@fle-MOFs is in the range of 0.1–0.5 eV, suggesting that the proton transport follows predominantly the typical Grotthuss transfer mechanism. The results of this study indicate that the CS/CMMIM@fle-MOF membranes combinations offer great potential for the design of composite porous proton-conducting materials.  相似文献   
7.
以GaInP/GaAs/Ge三结太阳电池为研究对象,开展了能量为0.7, 1, 3, 5, 10 MeV的质子辐照损伤模拟研究,建立了三结太阳电池结构模型和不同能量质子辐照模型,获得了不同质子辐照条件下的I-V曲线,光谱响应曲线,结合已有实验结果验证了本文模拟结果,分析了三结太阳电池短路电流、开路电压、最大功率、光谱响应随质子能量的变化规律,利用不同辐照条件下三结太阳电池最大输出功率退化结果,拟合得到了三结太阳电池最大输出功率随位移损伤剂量的退化曲线.研究结果表明,质子辐照会在三结太阳电池中引入位移损伤缺陷,使得少数载流子扩散长度退化幅度随质子能量的减小而增大,从而导致三结太阳电池相关电学参数的退化随质子能量的减小而增大.相同辐照条件下,中电池光谱响应退化幅度远大于顶电池光谱响应退化幅度,中电池抗辐照性能较差,同时中电池长波范围内光谱响应的退化幅度比短波范围更大,表明中电池相关电学参数的退化主要来源于基区损伤.  相似文献   
8.
Two flavonoid glycosides derived from rhamnopyranoside ( 1 ) and arabinofuranoside ( 2 ) have been isolated from leaves of Persea caerulea for the first time. The structures of 1 and 2 have been established by 1H NMR, 13C NMR, and IR spectroscopy, together with LC–ESI–TOF and LC–ESI–IT MS spectrometry. From the MS and MS/MS data, the molecular weights of the intact molecules as well as those of quercetin and kaempferol together with their sugar moieties were deduced. The NMR data provided information on the identity of the compounds, as well as the α and β configurations and the position of the glycosides on quercetin and kaempferol. We have also explored the application of sodium dodecyl sulfate (SDS) normal micelles in binary aqueous solution, at a range of concentrations, to the diffusion resolution of these two glycosides, by the application of matrix‐assisted diffusion ordered spectroscopy (DOSY) and pulse field gradient spin echo (PGSE) methodologies, showing that SDS micelles offer a significant resolution which can, in part, be rationalized in terms of differing degrees of hydrophobicity, amphiphilicity, and steric effects. In addition, intra‐residue and inter‐residue protonproton distances using nuclear Overhauser effect build‐up curves were used to elucidate the conformational preferences of these two flavonoid glycosides when interacting with the micelles. By the combination of both diffusion and nuclear Overhauser spectroscopy techniques, the average location site of kaempferol and quercetin glycosides has been postulated, with the former exhibiting a clear insertion into the interior of the SDS‐micelle, whereas the latter is placed closer to the surface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
9.
A newly synthesized one‐dimensional (1D) hydrogen‐bonded (H‐bonded) rhodium(II)–η5‐semiquinone complex, [Cp*Rh(η5p‐HSQ‐Me4)]PF6 ([ 1 ]PF6; Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl; HSQ=semiquinone) exhibits a paraelectric–antiferroelectric second‐order phase transition at 237.1 K. Neutron and X‐ray crystal structure analyses reveal that the H‐bonded proton is disordered over two sites in the room‐temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6? ion. The relative permittivity εb′ along the H‐bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of 13C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low‐temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10?4–10?6 s in the temperature range of 240–270 K. DFT calculations predict that the protonation/deprotonation of [ 1 ]+ leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π‐bonded rhodium fragment, producing the stable η6‐hydroquinone complex, [Cp*Rh3+6p‐H2Q‐Me4)]2+ ([ 2 ]2+), and η4‐benzoquinone complex, [Cp*Rh+4p‐BQ‐Me4)] ([ 3 ]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [ 2 ]2+ and [ 3 ], which would be generated in the H‐bonded chain.  相似文献   
10.
The use of quantitative nuclear magnetic resonance spectrometry for the determination of non‐UV active memantine hydrochloride with relative simplicity and precision has been demonstrated in this study. The method was developed on a 500 MHz NMR instrument and was applied to determination of the drug in a tablet formulation. The analysis was performed by taking caffeine as an internal standard and D2O as the NMR solvent. The signal of methyl protons of memantine hydrochloride appeared at 0.75 ppm (singlet) relative to the signal of caffeine (internal standard) at 3.13 ppm (singlet). The method was found to be linear (r2 = 0.9989) in the drug concentration range of 0.025 to 0.80 mg/ml. The maximum relative standard deviation for accuracy and precision was <2. The limits of detection and quantification were 0.04 and 0.11 mg/ml, respectively. The robustness of the method was revealed by changing nine different parameters. The deviation for each parameter was also within the acceptable limits. The study highlighted possibility of direct determination of memantine hydrochloride in pure form and in its marketed tablet formulation by the use of quantitative NMR, without the need of derivatization, as is the requirement in HPLC studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号