首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The effect that charge state has on the collision-induced dissociation (CID) of peptide ions is examined in detail for several representative peptides under high-energy collision conditions. The CID spectra of singly and doubly charged precursor ions (generated by fast-atom bombardment and electrospray ionization, respectively) are compared for several peptides with similar primary structure. It is shown that for peptides that contain highly basic amino acids, the dissociation of doubly charged ions is strongly influenced by the position of these residues within the peptide and the general observations reported concerning the dissociation of singly charged ions can be extended to precursors with higher charge states. Based on the dissociation behavior of the doubly charged ions of these peptides, it is demonstrated that two charges can reside in close proximity in the precursor ions, overcoming possible repulsion effects, when favored by a high concentration of basic sites. In addition)’ this work illustrates that in the case of doubly charged ions..the charge state of some fragment ions can be determined directly from the mass-to-charge ratio assignments of the CID spectrum.  相似文献   

2.
A variety of peptide sulfinyl radical (RSO?) ions with a well-defined radical site at the cysteine side chain were formed at atmospheric pressure (AP), sampled into a mass spectrometer, and investigated via collision-induced dissociation (CID). The radical ion formation was based on AP reactions between oxidative radicals and peptide ions containing single inter-chain disulfide bond or free thiol group generated from nanoelectrospray ionization (nanoESI). The radical induced reactions allowed large flexibility in forming peptide radical ions independent of ion polarity (protonated or deprotonated) or charge state (singly or multiply charged). More than 20 peptide sulfinyl radical ions in either positive or negative ion mode were subjected to low energy collisional activation on a triple-quadrupole/linear ion trap mass spectrometer. The competition between radical- and charge-directed fragmentation pathways was largely affected by the presence of mobile protons. For peptide sulfinyl radical ions with reduced proton mobility (i.e., singly protonated, containing basic amino acid residues), loss of 62?Da (CH2SO), a radical-initiated dissociation channel, was dominant. For systems with mobile protons, this channel was suppressed, while charge-directed amide bond cleavages were preferred. The polarity of charge was found to significantly alter the radical-initiated dissociation channels, which might be related to the difference in stability of the product ions in different ion charge polarities.  相似文献   

3.
Doubly protonated phosphopeptide (YGGMHRQET(p)VDC) ions obtained by electrospray ionization were collided with Xe and Cs targets to give singly and doubly charged positive ions via collision-induced dissociation (CID). The resulting ions were analyzed and detected by using an electrostatic analyzer (ESA). Whereas doubly charged fragment ions resulting from collisionally activated dissociation (CAD) were dominant in the CID spectrum with the Xe target, singly charged fragment ions resulting from electron transfer dissociation (ETD) were dominant in the CID spectrum with the Cs target. The most intense peak resulting from ETD was estimated to be associated with the charge-reduced ion with H2 lost from the precursor. Five c-type fragment ions with amino acid residues detached consecutively from the C-terminal were clearly observed without a loss of the phosphate group. These ions must be formed by N--Calpha bond cleavage, in a manner similar to the cases of electron capture dissociation (ECD) and ETD from negative ions. Although the accuracy in m/z of the CID spectra was about +/-1 Th because of the mass analysis using the ESA, it is supposed from the m/z values of the c-type ions that these ions were accompanied by the loss of a hydrogen atom. Four z-type (or y--NH3, or y--H2O) ions analogously detached consecutively from the N-terminal were also observed. The fragmentation processes took place within the time scale of 4.5 micros in the high-energy collision. The present results demonstrated that high-energy ETD with the alkali metal target allowed determination of the position of phosphorylation and the amino acid sequence of post-translational peptides.  相似文献   

4.
Electron-transfer dissociation (ETD) is a useful peptide fragmentation technique that can be applied to investigate post-translational modifications (PTMs), the sequencing of highly hydrophilic peptides, and the identification of large peptides and even intact proteins. In contrast to traditional fragmentation methods, such as collision-induced dissociation (CID), ETD produces c- and z·-type product ions by randomly cleaving the N–Cα bonds. The disappointing fragmentation efficiency of ETD for doubly charged peptides and phosphopeptide ions has been improved by ETcaD (supplemental activation). However, the ETD data derived from most database search algorithms yield low confidence scores due to the presence of unreacted precursors and charge-reduced ions within MS/MS spectra. In this work, we demonstrate that eight out of ten standard doubly charged peptides and phosphopeptides can be effortlessly identified by electron-transfer coupled with collision-induced dissociation (ET/CID) using the SEQUEST algorithm without further spectral processing. ET/CID was performed with the further dissociation of the charge-reduced ions isolated from ETD ion/ion reactions. ET/CID had high fragmentation efficiency, which elevated the confidence scores of doubly charged peptide and phosphospeptide sequencing. ET/CID was found to be an effective fragmentation strategy in “bottom-up” proteomic analysis.  相似文献   

5.
The dissociation of singly or multiply protonated peptide ions by using low-energy collisional activation (CA) is highly dependent on the sites of protonation. The presence of strongly basic amino acid residues in the peptide primary structure dictates the sites of protonation, which generates a precursor ion population that is largely homogeneous with respect to charge sites. Attempts to dissociate this type of precursor ion population by low-energy CA result in poor fragmentation via few pathways. The work described here represents a systematic investigation of the effects of charge heterogeneity in the precursor ion population of a series of model peptides in low-energy CA experiments. Incorporation of acidic residues in the peptide RLC*IFSC*FR (where C* indicates a cysteic acid residue), for example, balances the charge on the basic arginine residues, which enables the ionizing protons to reside on a number of less basic sites along the peptide backbone. This results in a precursor ion population that is heterogeneous with respect to charge site. Low-energy CA of these ions results in diverse and efficient fragmentation. Molecular modeling has been utilized to demonstrate that energetically preferred conformations incorporate an intraionic interaction between arginine and cysteic acid residues.  相似文献   

6.
The fragmentation of peptides and proteins upon collision‐induced dissociation (CID) is highly dependent on sequence and ion type (e.g. protonated, deprotonated, sodiated, odd electron, etc.). Some amino acids, for example aspartic acid and proline, have been found to enhance certain cleavages along the backbone. Here, we show that peptides and proteins containing dehydroalanine, a non‐proteinogenic amino acid with an unsaturated side‐chain, undergo enhanced cleavage of the N—Cα bond of the dehydroalanine residue to generate c‐ and z‐ions. Because these fragment ion types are not commonly observed upon activation of positively charged even‐electron species, they can be used to identify dehydroalanine residues and localize them within the peptide or protein chain. While dehydroalanine can be generated in solution, it can also be generated in the gas phase upon CID of various species. Oxidized S‐alkyl cysteine residues generate dehydroalanine upon activation via highly efficient loss of the alkyl sulfenic acid. Asymmetric cleavage of disulfide bonds upon collisional activation of systems with limited proton mobility also generates dehydroalanine. Furthermore, we show that gas‐phase ion/ion reactions can be used to facilitate the generation of dehydroalanine residues via, for example, oxidation of S‐alkyl cysteine residues and conversion of multiply‐protonated peptides to radical cations. In the latter case, loss of radical side‐chains to generate dehydroalanine from some amino acids gives rise to the possibility for residue‐specific backbone cleavage of polypeptide ions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The collision-induced dissociation spectra of a series of synthetic, tryptic peptides that differed by the position of an internal histidine residue were studied. Electrospray ionization of these peptides produced both doubly and triply protonated molecular ions. Collision-induced fragmentation of the triply protonated peptide ions had better efficiency than that of the doubly protonated ions, producing a higher abundance of product ions at lower collision energies. The product ion spectra of these triply protonated ions were dominated by a series of doubly charged y-ions and the amount of sequence information was dependent on the position of the histidine residue. In the peptides where the histidine was located towards the C-terminus of the peptide, a more extensive series of sequence specific product ions was observed. As the position of the histidine residue was moved towards the N-terminus of the peptide, systematically less sequence information was observed. The peptides were subsequently modified with diethylpyrocarbonate to manipulate the product ion spectra. Addition of the ethoxyformyl group to the N-terminus and histidine residue shifted the predominant charge state of the modified peptide to the doubly protonated form. These peptide ions fragmented efficiently, producing product ion spectra that contained more sequence information than could be obtained from the corresponding unmodified peptide.  相似文献   

8.
用ESI/MS-MS方法研究了质子化多肽RRMKWKK 在低能气相碰撞诱导解离(CID)条件下的碰撞能和解离路径. 研究结果表明, [M+2H]2+和[M+3H]3+的CID断裂曲线和断裂位点相似. 但质子化多肽所含正电荷个数不同时, 产生同一碎片离子的初始碰撞能不同. 碱性氨基酸残基精氨酸(Arg)的支链是多肽RRMKWKK质子化时质子优先结合的位点, 导致含有Arg的多肽在气相碰撞诱导解离条件下解离时需要较高的碰撞能. 在用质谱方法研究含精氨酸残基的多肽时应选择质子个数比多肽中Arg个数多1个的母体离子. 质子化多肽RRMKWKK的结构AM1计算结果表明, 质子化RRMKWKK中两个相邻精氨酸在空间上相互分离, 库伦斥力的影响不足以改变质子的优先结合位点.  相似文献   

9.
Bonds that break in collision-induced dissociation (CID) are often weakened by a nearby proton, which can, in principle, be carried away by either of the product fragments. Since peptide backbone dissociation is commonly charge-directed, relative intensities of charge states of product y- and b-ions depend on the final location of that proton. This study examines y-ion charge distributions for dissociation of doubly charged peptide ions, using a large reference library of peptide ion fragmentation generated from ion-trap CID of peptide ions from tryptic digests. Trends in relative intensities of y2+ and y1+ ions are examined as a function of bond cleavage position, peptide length (n), residues on either side of the bond and effects of residues remote from the bond. It is found that yn-2/b2 dissociation is the most sensitive to adjacent amino acids, that y2+/y1+ steadily increase with increasing peptide length, that the N-terminal amino acid can have a major influence in all dissociations, and in some cases other residues remote from the bond cleavage exert significant effects. Good correlation is found between the values of y2+/y1+ for the peptide and the proton affinities of the amino acids present at the dissociating peptide bond. A few deviations from this correlation are rationalized by specific effects of the amino acid residues. These correlations can be used to estimate trends in y2+/y1+ ratios for peptide ions from amino acid proton affinities.  相似文献   

10.
The widespread occurrence of the neutral loss of one to six amino acid residues as neutral fragments from doubly protonated tryptic peptides is documented for 23 peptides with individual sequences. Neutral loss of amino acids from the N-terminus of doubly charged tryptic peptides results in doubly charged y-ions, forming a ladder-like series with the ions [M + 2H](2+) = y(max) (2+), y(max - 1) (2+), y(max - 2) (2+), etc. An internal residue such as histidine, proline, lysine or arginine appears to favor this type of fragmentation, although it was sometimes also observed for peptides without this structure. For doubly protonated non-tryptic peptides with one of these residues at or near the N-terminus, we observed neutral loss from the C-terminus, resulting in a doubly charged b-type ion ladder. The analyses were performed by Q-TOF tandem mass spectrometry, facilitating the recognition of neutral loss ladders by their 2+ charge state and the conversion of the observed mass differences into reliable sequence information. It is shown that the neutral loss of amino acid residues requires low collision offset values, a simple mechanistic explanation based on established fragmentation rules is proposed and the utility of this neutral loss fragmentation pathway as an additional source for dependable peptide sequence information is documented.  相似文献   

11.
借助质量分析离子动能谱和串联质谱研究了由电子轰击产生的双电荷离子的单分子亚稳碎裂及碰撞诱导分解过程,讨论了两种实验方法导致的差别因素.此外,根据质量分析离子动能谱提供的双电荷离子电荷分离反应的动能释放值计算了两电荷中心间距的最小值,以判别按不同电荷分离方式碎裂的双电荷离子的过渡态结构.  相似文献   

12.
The effect of peptide dication charge location on electron capture dissociation (ECD) fragmentation pattern is investigated. ECD fragmentation patterns are compared for peptides with amide and free acid C-terminal groups. ECD of free acid compared with C-terminally amidated peptides with basic residues near the N-terminus demonstrates increased formation of a-type ions. Similarly, ECD of free acid compared with C-terminally amidated peptides with basic residues near the C-terminus exhibits increased formation of y-type ions. Alteration of the peptide sequence to inhibit the formation of charged side chains (i.e., amino acid substitution and acetylation) provides further evidence for charge location effect on ECD. We propose that formation of zwitterionic peptide structures increases the likelihood of amide nitrogen protonation (versus basic side chains), which is responsible for the increase in a- and y-type ion formation.  相似文献   

13.
The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly (M+) and multiply ([M++nH](n+1)+) charged precursor ions results in exclusive dissociation at the fixed charge containing side chain, independently of the amino acid composition and precursor ion charge state (i.e., proton mobility). However, loss of the methylphenacyl sulfide side-chain fragment as a neutral versus charged (protonated) species was observed to be highly dependent on the proton mobility of the precursor ion, and the identity of the phenacyl group para-substituent. Molecular orbital calculations were performed at the B3LYP/6-31+G** level of theory to calculate the theoretical proton affinities of the neutral side-chain fragments. The log of the ratio of neutral versus protonated side-chain fragment losses from the derivatized side chain were found to exhibit a linear dependence on the proton affinity of the side-chain fragmentation product, as well as the proton affinities of the peptide product ions. Finally, MS3 dissociation of the nominally identical neutral and protonated loss product ions formed by MS/MS of the [M++H]2+ and [M++2H]3+ precursor ions, respectively, from the peptide GAILM(X)GAILK revealed significant differences in the abundances of the resultant product ions. These results suggest that the protonated peptide product ions formed by gas-phase fragmentation of sulfonium ion containing precursors in an ion trap mass spectrometer do not necessarily undergo intramolecular proton 'scrambling' prior to their further dissociation, in contrast to that previously demonstrated for peptide ions introduced by external ionization sources.  相似文献   

14.
The combination of deprotonation (via ion/molecule and ion/ion reactions) and low-energy collision-induced dissociation (CID) has been explored for the enhanced characterisation of tryptic peptides via access to different precursor charge states. This approach allows instant access to fragmentation properties of singly and doubly protonated precursors (arising from the availability of mobile protons) in a single experiment. Considering both charge states extended our base of structurally informative data (in comparison with considering just a single charge state) due to generation of additional sequence ions and by obtaining supplementary structural information derived from selective cleavages. Roughly 37% of combined data sets (CID spectra of doubly and singly charged precursor) showed a greater database identification confidence than each set alone. Moreover, comparison between a number of sequence ions of the singly charged precursor and the doubly charged precursor provided a mean of distinguishing the two classes of tryptic peptides (arginine or lysine containing).  相似文献   

15.
The positive ion electrospray ionization (ESI+) mass spectra of peptides usually display only protonated molecules provided that soft ionization conditions are applied (low cone voltage to prevent in-source dissociations). Such ions can be multiply charged depending on the molecular weight of the studied compounds. We have experienced an unexpected behavior during the ESI analysis of a modified peptide of relatively high mass (3079 Da). A specific fragmentation occurred even under soft energetic conditions, leading to a mass spectrum containing multiply charged molecular and fragment ions. The selective rupture involved the amide bond between the glutamic acid and proline residues (E-P sequence). The successive replacement of each amino acid by an alanine residue (positional scanning study) was undertaken to assess which part of the sequence induced such selective and abundant fragmentation on multiply charged species. The succession P-P was evidenced as the minimum unit giving rise to the first peptide bond rupture in the sequence X-P-P. Any acidic amino acid at the X position (X = D, E) favored the fragmentation by an intramolecular interaction. Such proline-induced fragmentation occurring readily in the source differed from the literature data on the specific behavior of proline-containing peptides where bond ruptures occur solely in dissociation conditions.  相似文献   

16.
Amino acid clusters have been studied by several groups and most notably magic number clusters and chiral recognition have been reported. In this work, we have studied the formation of amino acid clusters by electrospray ionization (ESI) and their stability by high-energy collision-induced dissociation (CID). Appearance sizes were determined for multiply charged clusters where the charge is either due to protons or to sodium ions. Finally, we conclude that chiral selectivity plays an important role in cluster formation but seems to be of minor importance for the fragmentation of mixed clusters.  相似文献   

17.
Some of the most prominent "neutral losses" in peptide ion fragmentation are the loss of ammonia and water from N-terminal glutamine. These processes are studied by electrospray ionization mass spectrometry in singly- and doubly-protonated peptide ions undergoing collision-induced dissociation in a triple quadrupole and in an ion trap instrument. For this study, four sets of peptides were synthesized: (1) QLLLPLLLK and similar peptides with K replaced by R, H, or L, and Q replaced by a number of amino acids, (2) QLnK (n = 0, 1, 3, 5, 7, 9, 11), (3) QLnR (n = 0, 1, 3, 5, 7, 9), and (4) QLn (n = 1, 2, 3, 4, 8). The results for QLLLPLLLK and QLLLPLLLR show that the singly protonated ions undergo loss of ammonia and to a smaller extent loss of water, whereas the doubly protonated ions undergo predominant loss of water. The fast fragmentation next to P (forming the y5 ion) occurs to a larger extent than the neutral losses from the singly protonated ions but much less than the water loss from the doubly protonated ions. The results from these and other peptides show that, in general, when N-terminal glutamine peptides have no "mobile protons", that is, the number of charges on the peptide is no greater than the number of basic amino acids (K, R, H), deamination is the predominant neutral loss fragmentation, but when mobile protons are present the predominant process is the loss of water. Both of these processes are faster than backbone fragmentation at the proline. These results are rationalized on the basis of resonance stabilization of the two types of five-membered ring products that would be formed in the neutral loss processes; the singly protonated ion yields the more stable neutral pyrrolidinone ring whereas the doubly protonated ion yields the protonated aminopyrroline ring (see Schemes). The generality of these trends is confirmed by analyzing an MS/MS spectra library of peptides derived from tryptic digests of yeast. In the absence of mobile protons, glutamine deamination is the most rapid neutral loss process. For peptides with mobile protons, dehydration from glutamine is far more rapid than from any other amino acid. Most strikingly, end terminal glutamine is by far the most labile source of neutral loss in excess-proton peptides, but not highly exceptional when mobile protons are not available. In addition, rates of deamination are faster in lysine versus arginine C-terminus peptides and 20 times faster in positively charged than negatively charged peptides, demonstrating that these formal neutral loss reactions are not "neutral reactions" but depend on charge state and stability.  相似文献   

18.
A computer program (COMPOST) is described that carries out predictive computations on known amino acid sequences. The program is designed to be of use to mass spectrometrists with an interest in protein and peptide sequencing. Mass values (monoisotopic and average) for protonated peptide and protein molecules and elemental compositions are calculated. COMPOST also calculates mass to charge ratio values for protonated peptides expected from specified digests, locates specified amino acid subsequences or peptides of a specifIed molecular weight within a longer sequence, and predicts mass to charge ratio values for fragment ions from high-energy collision-induced dissociation of protonated peptides.  相似文献   

19.
Unimolecular fragmentation reactions of peptides in low-energy collision-induced dissociation are reviewed in the mechanistic context of five-membered ring formation. This structure of intermediates or of fragment ions is recognized as a key element that governs unimolecular peptide fragmentation within the structural framework determined by the peptide backbone and its side-chains. A collection of collision-induced dissociation reactions is presented covering (i) b-ion formation, (ii) the fragmentation of N-terminally acylated peptides, (iii) neutral loss of the C-terminal amino acid in alkali or silver cationized peptides, (iv) the fragmentation of isoAsp-containing peptides and (v) the fragmentation of negatively charged Asp- or Glu-containing peptides. It appears that for all possible nucleophile-electrophile interactions leading to a five-membered ring structure an associated unimolecular peptide fragmentation reaction can be observed.  相似文献   

20.
Nine aminoglycoside antibiotics were analyzed in two quadrupole ion trap mass spectrometers using electrospray ionization. Structural information was obtained via collision-activated dissociation (CAD) and infrared multi-photon dissociation (IRMPD) of the protonated species. Several of the compounds, having multiple basic sites, preferred the doubly protonated form while some existed in the singly charged state or were distributed between single and doubly protonated species, allowing comparison of the fragmentation patterns of the two charge states. In general, IRMPD is as efficient as CAD, produces more low-mass fragment ions, and is more universally applied owing to its low dependence on trapping, pressure and tuning conditions. Alkali metal complexation using Li(+) and Na(+) was probed as a means of producing different fragmentation patterns, but in most cases the resulting fragmentation patterns were simplified versions of those obtained for the protonated analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号