首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1142篇
  免费   288篇
  国内免费   55篇
化学   1345篇
晶体学   1篇
力学   10篇
数学   1篇
物理学   128篇
  2023年   11篇
  2022年   25篇
  2021年   57篇
  2020年   136篇
  2019年   77篇
  2018年   55篇
  2017年   51篇
  2016年   92篇
  2015年   91篇
  2014年   99篇
  2013年   89篇
  2012年   86篇
  2011年   88篇
  2010年   81篇
  2009年   72篇
  2008年   73篇
  2007年   54篇
  2006年   45篇
  2005年   39篇
  2004年   38篇
  2003年   29篇
  2002年   15篇
  2001年   11篇
  2000年   7篇
  1999年   1篇
  1998年   6篇
  1997年   9篇
  1996年   3篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   7篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
排序方式: 共有1485条查询结果,搜索用时 15 毫秒
1.
Pyrrolopyrrole aza‐BODIPY (PPAB) developed in our recent study from diketopyrrolopyrrole by titanium tetrachloride‐mediated Schiff‐base formation reaction with heteroaromatic amines is a highly potential chromophore due to its intense absorption and fluorescence in the visible region and high fluorescence quantum yield, which is greater than 0.8. To control the absorption and fluorescence of PPAB, particularly in the near‐infrared (NIR) region, further molecular design was performed using DFT calculations. This results in the postulation that the HOMO–LUMO gap of PPAB is perturbed by the heteroaromatic moieties and the aryl‐substituents. Based on this molecular design, a series of new PPAB molecules was synthesized, in which the largest redshifts of the absorption and fluorescence maxima up to 803 and 850 nm, respectively, were achieved for a PPAB consisting of benzothiazole rings and terthienyl substituents. In contrast to the sharp absorption of PPAB, a PPAB dimer, which was prepared by a cross‐coupling reaction of PPAB monomers, exhibited panchromatic absorption across the UV/Vis/NIR regions. With this series of PPAB chromophores in hand, a potential application of PPAB as an optoelectronic material was investigated. After identifying a suitable PPAB molecule for application in organic photovoltaic cells based on evaluation using time‐resolved microwave conductivity measurements, a maximized power conversion efficiency of 1.27 % was achieved.  相似文献   
2.
One of the most important endogenous reactive oxygen species, hypochlorous acid (HClO), is involved in numerous pathological and physiological processes. Herein, a near-infrared fluorescence probe (CyHR) was designed and synthesized for ultrafast (within 0.2 s), sensitive (limit of detection=39.44 nm ), and selective response to HClO. The reaction mechanism was systematically analyzed by MS, 1H NMR spectroscopy, HPLC-MS techniques, and theoretical calculations. The results indicated that HClO can be recognized by CyHR, which is based on chlorine–oxygen (Cl−O) bond formation. To the best of our knowledge, this study is the first to find Cl−O bonds among organic aromatic compounds, given that Cl−O bonds are common among inorganics. Through biological experiments, CyHR was successfully applied to image exogenous and endogenous HClO in macrophage cells (RAW 264.7). Thus, CyHR is a promising tool for HClO-related physiological and pathological studies and may provide a means for designing HClO-specific fluorescence probes.  相似文献   
3.
Our previous discovery suggested that substituents on the 1,7 positions delicately modulate the sensing ability of the meso-arylmercapto boron-dipyrromethene (BODIPY) to biothiols. In this work, the impact of delicate modulations on the sensing ability is investigated. Therefore, 1,7-dimethyl, 3,5-diaryl substituted BODIPY is designed and developed and its conformationally restricted species with a meso-arylmercapto moiety ( DM-BDP-SAr and DM-BDP-R-SAr ) as selective fluorescent probes for Cys. Moreover, the lysosome-target probes ( Lyso-S and Lyso-D ) based on DM-BDP-SAr carrying one or two morpholinoethoxy moieties were developed. They were able to detect Cys selectively in vitro with low detection limits. Both Lyso-S and Lyso-D localized nicely in lysosomes in living HeLa cells and exhibited red fluorescence for Cys. Moreover, a novel fluorescence quenching mechanism was proposed from the calculations by density functional theory (DFT). The probes may go through intersystem crossing (from singlet excited state to triplet excited state) to result in fluorescence quenching.  相似文献   
4.
First-in-class CuII and AuIII metaled phosphorus dendrons were synthesized and showed significant antiproliferative activity against several aggressive breast cancer cell lines. The data suggest that the cytotoxicity increases with reducing length of the alkyl chains, whereas the replacement of CuII with AuIII considerably increases the antiproliferative activity of metaled phosphorus dendrons. Very interestingly, we found that the cell death pathway is related to the nature of the metal complexed by the plain dendrons. CuII metaled dendrons showed a potent caspase-independent cell death pathway, whereas AuIII metaled dendrons displayed a caspase-dependent apoptotic pathway. The complexation of plain dendrons with AuIII increased the cellular lethality versus dendrons with CuII and promoted the translocation of Bax into the mitochondria and the release of Cytochrome C (Cyto C).  相似文献   
5.
ABSTRACT

Design, synthesis and evaluation of push-pull N,N′-diphenyl-dihydrodibenzo[a,c]phenazines are reported. Consistent with theoretical predictions, donors and acceptors attached to the bent mechanophore are shown to shift absorption maxima to either red or blue, depending on their positioning in the chromophore. Redshifted excitation of push-pull fluorophores is reflected in redshifted emission of both bent and planar excited states. The intensity ratios of the dual emission in more and less polar solvents imply that excited-state (ES) planarization decelerates with increasing fluorophore macrodipole, presumably due to attraction between the wings of closed papillons. ES planarization of highly polarisable papillons is not observed in lipid bilayer membranes. All push-pull papillon amphiphiles excel with aggregation-induced emission (AIE) from bent ES as micelles in water and mechanosensitivity in viscous solvents. They are not solvatochromic and only weakly fluorescent (QY < 4%).  相似文献   
6.
A new fluorescent ribonucleoside alphabet (mthN) consisting of pyrimidine and purine analogues, all derived from methylthieno[3,4-d]pyrimidine as the heterocyclic core, is described. Large bathochromic shifts and high microenvironmental susceptibility of their emission relative to previous alphabets derived from thieno[3,4-d]pyrimidine (thN) and isothiazole[4,3-d]pyrimidine (tzN) scaffolds are observed. Subjecting the purine analogues to adenosine deaminase, guanine deaminase and T7 RNA polymerase indicate that, while varying, all but one enzyme tolerate the corresponding mthN/mthNTP substrates. The robust emission quantum yields, high photophysical responsiveness and enzymatic accommodation suggest that the mthN alphabet is a biophysically viable tool and can be used to probe the tolerance of nucleoside/tide-processing enzymes to structural perturbations of their substrates.  相似文献   
7.
Peroxynitrite (ONOO) as a major reactive oxygen species plays important roles in cellular signal transduction and homeostatic regulation. Precise detection of ONOO in biological systems is vital for exploring its physiological and pathological function. Among numerous detection methods, fluorescence imaging technology using fluorescent probes offers some advantages, including simple operation, high sensitivity and selectivity, as well as real-time and nondestructive detection. In particular, ratiometric fluorescent probes, in which the built-in calibration of the two emission bands prevents interference from the biological environment, have been extensively employed to monitor the fluctuation of bioactive species. In this review, we will discuss small-molecule ratiometric fluorescent probes for ONOO in live cells or in vivo, which involves chemical structures, response mechanisms, and biological applications. Moreover, the challenges and future prospects of ONOO-responsive ratiometric fluorescent probe are also proposed.  相似文献   
8.
Matriptase‐2, a type II transmembrane serine protease, plays a key role in human iron homeostasis. Inhibition of matriptase‐2 is considered as an attractive strategy for the treatment of iron‐overload diseases, such as hemochromatosis and β‐thalassemia. In the present study, synthetic routes to nine dipeptidomimetic inactivators were developed. Five active compounds ( 41 – 45 ) were identified and characterized kinetically as irreversible inhibitors of matriptase‐2. In addition to a phosphonate warhead, these dipeptides possess two benzguanidine moieties as arginine mimetics to provide affinity for matriptase‐2 by binding to the S1 and S3/S4 subpockets, respectively. This binding mode was strongly supported by covalent docking analysis. Compounds 41 – 45 were obtained as mixtures of two diastereomers and were therefore separated into the single epimers. Compound 45 A , with S configuration at the N‐terminal amino acid and R configuration at the phosphonate carbon atom, was the most potent matriptase‐2 inactivator with a rate constant of inactivation of 2790 m ?1 s?1 and abolished the activity of membrane‐bound matriptase‐2 on the surface of intact cells. Based on the chemotyp of phosphono bisbenzguanidines, the design and synthesis of a fluorescent probe ( 51 A ) by insertion of a coumarin label is described. The in‐gel fluorescence detection of matriptase‐2 was demonstrated by applying 51 A as the first activity‐based probe for this enzyme.  相似文献   
9.
Environmental monitoring is getting more important nowadays due to the greater stress faced by the natural environment in the era of urbanisation and industrialisation. To accomplish the task, rapid and reliable analytical probes are essentially needed to perform the monitoring at real time basis with high sensitivity and accuracy. In view of this, analytical probes developed using carbon nanoparticles are one of the latest alternatives that are proven with capability to detect various analytes of the environment. Carbon nanoparticles portray good fluorescence property that enables the integration onto optical sensing transducers. Further engineering via surface functionalization can be performed in the interest to improve the selectivity and sensitivity of the probes. There are several advantages of using carbon nanoparticles and the most significant benefit is the sustainability prospect as compared to other groups of fluorophores. Carbon nanoparticles can be synthesised with greener approach via simple pyrolysis or hydrolysis processes that involve minimum use of toxic or harmful starting precursors, besides able to tap on using renewable resources such as carbon rich agricultural wastes. The synthesis is often performed under mild condition and produces less or no side chemical products. Carbon nanoparticles by nature show low toxicity effect to the environment. This review focuses specifically of the sustainable significances, advantages and achievements in adopting carbon nanoparticles as an alternative for environmental monitoring.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号