首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2020年   1篇
  2016年   1篇
  1992年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2 and a diol (HOR′OH = 1,4-cyclohexanedimethanol, 1,4-benzenedimethanol, tetraethylene glycol, or 1,12-dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2 and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2) –[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2 oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2 oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2 with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2 with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, TGA, DSC, and SEC. 31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures and Tg profiles. The polymers have weight average MWs of up to 3.8 × 104 Da.  相似文献   
2.
The syntheses of a series of substituted polyphosphonates of the type [OP(X)(Ar)O(CH2)12]n (X = O, S, Se; Ar = phenyl, 2,2′‐bithienyl‐5‐yl) are reported. The s for the polyphosphonates range from 1.1 to 4.6 × 104 Da and are significantly higher than those previously reported for polyphosphonates synthesized via polycondensation reactions. Thermal characterization indicates that all of the polymers are in the rubbery state at room temperature and have thermal stabilities as high as 290 °C. The linear absorption spectra, emission spectra, and emission quantum yields of the 2,2′‐bithenyl‐5‐yl substituted polyphosphonates show distinct trends with respect to the chalcogen attached to the phosphorus. Solutions of these polymers show emission at wavelengths ranging from 380 to 400 nm and, depending on the choice of X, the quantum yields are considerably larger than that of 2,2′‐bithiophene. Nonlinear optical measurements of the polyphosphonates with 2,2′‐bithenyl‐5‐yl substituents show that nonlinear absorbance increases with increasing molecular weight of X. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3663–3674  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号