首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   2篇
  国内免费   1篇
化学   17篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2014年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1990年   1篇
  1982年   2篇
排序方式: 共有17条查询结果,搜索用时 328 毫秒
1.
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] ( 1‐Cl ), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5‐Cpxbiph)Ir(phpy)(py)]+ ( 1‐py ) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.  相似文献   
2.
Immobilization ofRhizopus arrhizus mycelium improved fumaric acid production. The optimum conditions for fumaric acid production with immobilized cells were investigated using a statistical experimental design. Substrate concentration, carbon:nitrogen ratio, and residence time were chosen as independent variables. In the repeated batch shake flask fermentation, the fumaric acid yield from xylose was as much as 3.5 times higher with immobilized mycelium than with free mycelium. Polyurethane foam cubes, in this case, gave better results than nylon net cubes as a carrier.  相似文献   
3.
The potential application of glycosyltransferases in glycoconjugate synthesis has attracted considerable interest from the biotechnology community in recent years. This concept article focuses on the current understanding of the chemistry of a family of plant enzymes capable of glycosylating small lipophilic molecules. These enzymes are discussed in terms of their regio- and enantioselective substrate recognition, sugar-donor selectivity and their utility as biocatalysts in whole-cell systems.  相似文献   
4.
生物催化剂在有机合成中的应用   总被引:1,自引:0,他引:1  
本文综述了生物催化剂的类型及特征,特别是它与化学催化剂相比具有显著的特点:高效性和专一性;介绍了生物催化剂在不同有机反应中的应用,旨在鼓励更多的化学工程者使用生物催化剂,使它们在未来的有机合成领域中发挥越来越大的作用。  相似文献   
5.
胡安东  周顺桂  叶捷 《化学进展》2021,33(11):2103-2115
半人工光合系统通过利用人工光合系统与自然光合系统关键功能组分的协同效应以实现太阳能-化学能的转化。生物杂化体介导的半人工光合系统(biohybrid mediated semi-artificial photosynthetic system, BMSAPS)创新性地耦合了光敏剂优异的光捕获特性及生物催化剂高效的催化能力,从而利用太阳能高效驱动特定的化学转化过程。强化光敏剂与生物催化剂微界面间电子的产生、传输及利用是提高BMSAPS性能的关键。本文从BMSAPS的基本原理出发,分析了BMSAPS构建的关键科学问题及研究现状,阐述了该系统光生电子传递的相关机制及研究手段,总结了其在可再生能源转化、二氧化碳减排等方面的研究进展,并就未来的研究方向提出展望。本文有助于加深对BMSAPS的认识,从而为进一步优化其在能源生产和环境修复领域的应用提供理论基础和技术支撑。  相似文献   
6.
γ-aminobutyric acid (GABA) and Isinglass a collagen peptide have been utilized as highly efficient bifunctional biocatalysts for the efficient and convenient synthesis of 2-aminobenzothiazolomethyl-2-naphthols through a one-pot three-component Mannich reaction between diverse aldehydes, 2-naphthol and 2-aminobenzothiazole under solvent-free condition in high yields. Moreover, GABA could be recycled and reused at least four times without noticeable loss of its activity.  相似文献   
7.
Recent work on immobilized biocatalysts at Helsinki University of Technology, Finland, is described, with starch processing, Β-galactosidase, glucose isomerase, invertase, and the immobilization of live cells as special examples.  相似文献   
8.
New imine reductase activity has been discovered in the anaerobic bacterium Acetobacterium woodii by screening a dynamic combinatorial library of virtual imine substrates, using a biphasic water-tetradecane solvent system. Benzylidine aniline and butylidine aniline were reduced to the corresponding amines by caffeate-induced cells, whereas uninduced cells reduced butylidine aniline only. The reductions were detected despite side reactions that consumed some of the starting materials. The new screen can now be extended to discover synthetically useful imine reductases and enzymes that catalyse reactions for which biocatalytic equivalents of the chemical reactions have not yet been discovered.  相似文献   
9.
Atmospheric CO2 is a cheap and abundant source of carbon for synthetic applications. However, the stability of CO2 makes its conversion to other carbon compounds difficult and has prompted the extensive development of CO2 reduction catalysts. Bioelectrocatalysts are generally more selective, highly efficient, can operate under mild conditions, and use electricity as the sole reducing agent. Improving the communication between an electrode and a bioelectrocatalyst remains a significant area of development. Through the examples of CO2 reduction catalyzed by electroactive enzymes and whole cells, recent advancements in this area are compared and contrasted.  相似文献   
10.
An organic semiconducting polymer nanobiocatalyst (SPNB) composed of a semiconducting polymer core conjugated with microsomal cytochrome P450 (CYP) has been developed for photoactivation of intracellular redox. The core serves as the light‐harvesting unit to initiate photoinduced electron transfer (PET) and facilitate the regeneration of dihydronicotinamide adenine dinucleotide phosphate (NADPH), while CYP is the catalytic center for intracellular redox. Under light irradiation, the semiconducting core can efficiently catalyze the generation of NADPH with a turnover frequency (TOF) 75 times higher than the reported nanosystems, ensuring the supply of the cofactor for intracellular redox. SPNB‐mediated intracellular redox thus can be efficiently activated by light in living cells to convert the model substrate and also to trigger the bioactivation of anticancer drugs. This study provides an organic nanobiocatalytic system that allows light to remotely control intracellular redox in living systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号