首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   6篇
  国内免费   25篇
化学   94篇
晶体学   2篇
力学   3篇
综合类   3篇
物理学   14篇
  2023年   4篇
  2022年   1篇
  2020年   9篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   6篇
  2011年   4篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   9篇
  2006年   4篇
  2005年   6篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
排序方式: 共有116条查询结果,搜索用时 142 毫秒
1.
A new environment-friendly bentonite intercalation composite was successfully obtained from alumina sol intercalation. This process used industrial grade pseudo boehmite as the aluminum source and provided with the advantage of zero emission of acidic wastewater. The bentonite intercalation composite was investigated by XRF, ICP, XRD, FT-IR, BET, and pyridine-FTIR. Results indicated that the basal spacing was enlarged from 14.72 to 15.60 Å; the specific surface area increased by 128%; and the total acid content increased from 65.32 to 245.76 μmol/g. The catalytic activity of this composite was tested by alkylation of aromatics with olefins. The results show that the weak Lewis acid generated by extra-framework aluminum and specific surface area play a decisive role, while weak Brønsted acid site is not the active site for this alkylation reaction.  相似文献   
2.
A nanocomposite (Ho2O3NPs/BNT) was synthesized by decorating holmium(III)oxide nanoparticles (H2O3NPs) on bentonite (BNT) through a realizable sonochemical approach for the electrochemical detection of haloperidol (Hlp). A glassy carbon electrode was modified with this nanocomposite. The Ho2O3NPs/BNT modified electrode outperformed bare and other modified electrodes in terms of electrochemical performance for Hlp detection in a pH 8.0 phosphate buffer. The proposed electrochemical platform showed a wide linear range (0.01 μM–24 μM), low detection limit (2.4 nM), and high sensitivity by square wave voltammetry. In addition, the proposed electrochemical sensor met the clinical criteria in terms of stability, selectivity, and repeatability.  相似文献   
3.
The developing countries are suffering from the toxicity of different industrial effluents, especially dyes that contaminate water systems. This study successfully explained the preparation and characterization of nano bentonite to extract Direct Yellow Fifty (DY50). Direct Yellow 50 is an organic contaminant that may affect the quality of water. The characterization of prepared nanoparticles was done using Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR). The impact of different operating conditions was studied using different pH, dose, temperature, contact time, and initial DY50 concentrations. The obtained results indicated that nano bentonite could adsorb about 94 % at initial concentrations of 40 mg/L, respectively. The optimum removal conditions were observed at an acidic pH (pH 3) using a sorbent material dosage of 0.05 g for 4 h at 30 °C. The adsorption isotherm, kinetic analysis, and thermodynamic behavior were studied using linear equation form, and the adjusted R2 was compared to detect the preferred models. The adsorption behavior pseudo-second order kinetics, and fitted Langmuir isotherm model, respectively, showed the chemisorption interactions between adsorbed and sorbed molecules. Thermodynamic behavior indicated that the reaction was exothermic. Finally, this study strongly recommended using nano bentonite for DY50 removal from an aqueous solution.  相似文献   
4.
Soilbentonite slurry walls are designed to inhibit the subsurface movement of contaminants from hazardous waste sites. Although it is generally accepted that high concentrations of organic compounds will adversely affect soilbentonite slurry walls and clay liners, previous research investigating the effects of NAPLs on the conductivity of clay wall materials has been inconclusive. In this study the effects of various organics (benzene, aniline, trichloroethylene, ethylene dichloride, methylene chloride) on the effective conductivity of a typical soilbentonite slurry wall material were studied under two effective stress conditions, 200 and 52kPa. The hydraulic conductivity for the soilbentonite material permeated with water averaged 1.52×10-8cms-1. Compared to water, there was little change in conductivity when the sample was permeated with a solution containing a NAPL compound at its solubility limit, except for aniline. However, there was a one to two order of magnitude decrease in conductivity when the sample was permeated with a pure NAPL for all NAPLs tested. When the soilbentonite material was permeated with a water/NAPL/water/NAPL sequence, the conductivity decreased one to two orders of magnitude when a NAPL was introduced following water; however, when water was reintroduced after the NAPL, the conductivity increased to the initial hydraulic conductivity. The conductivity again decreased one to two orders of magnitude when the NAPL was reintroduced. This trend occurred for all NAPLs tested, and the fluid properties of the NAPL compounds alone did not account for the decrease in conductivity compared to water.  相似文献   
5.
This study focuses on the MCM-41 material (Mobil Composition of Matter). The MCM-41 nanomaterial presents higher physical properties such as pore sizes, surface areas and pore volumes. This material is usually synthesized by using laboratory reagents as silicate sources and aluminium source. These laboratory reagents are still expensive and toxic for large scale production. The main aim of this work is to resolve this problem and to replace these expensive laboratory reagents by more cost effective ones. The volclay and Algerian bentonite low-cost mass clay materials are used as silicate and acuminate sources separately by adopting an alkaline fusion process to extract both silicon and aluminium (1 kg of silicium and aluminium from volclay and Algerian bentonite cost around 0.03 and 0.01 € whereas the same amount of silicon from ludox and aluminium from sodium aluminates cost around 350 €). The synthesis of MCM-41 from bentonite was carried out by the hydrothermal method using the supernatants of bentonite (in the form of sodium silicate and sodium aluminate). On the basis of the data obtained from powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and N2 adsorption and desorption, the results revealed that the properties of MCM-41 synthesized from Algerian bentonite and volclay separately depend on both elemental composition and mineral phase contents of the used bentonite. Pure and highly ordered hexagonal mesoporous MCM-41 with uniform pore sizes and a high specific surface area have been successfully synthesized without any phases which exist in natural bentonite. The Algerian bentonite was chosen because of its low cost compared to volclay, another commercial clay source.  相似文献   
6.
To remove methylene blue dye from water by adsorption, bentonites were modified by polyhedral oligomeric silsesquioxane (POSS) and three kind of quaternary ammonium surfactants (dodecyl trimethyl ammonium bromide, tetrabutyl ammonium bromide, cetyl trimethylammonium bromide) in aqueous solution. Systematic adsorption experiments were carried out, the adsorption mechanism was studied, and the factors governing the adsorption of methylene blue on modified bentonite were discussed. The adsorption capacity of methylene blue on all three modified bentonites in 1000 mg·L−1 solutions quickly reached equilibrium within 2000 s, and the removal rate was basically 100%; however, the removal rate in raw bentonite samples was only 60%. The pseudo second-order kinetic model can provide satisfactory kinetic data fitting. The obtained adsorption isotherms fit well with the Dubinin-Radushkevich isotherm model. The thermodynamic results showed that the adsorption process was a spontaneous endothermic physical adsorption process. With increasing pH and KCl concentration, the removal of methylene blue increased significantly. The results of this study confirmed that the modified bentonite is a candidate material as a cationic dye adsorbent.  相似文献   
7.
The liquid phase acetolysis of epichlorohydrin (ECH) with acetic acid was studied over bentonite clay catalysts and was found to be very active for the selective formation of 1-acetoxy-3-chloro-2-propanol. The reaction followed first order kinetics with respect to epichlorohydrin and obeyed the Langmuir-Hinshelwood mechanism.  相似文献   
8.
In this study, the adsorption behavior of natural bentonite with respect to Fe(III) and Ni(II) has been studied in order to consider its application to purity metal finishing wastewaters. During the adsorption process, batch technique is used, and the effects of pH, bentoite amount, temperature, heavy metal concentration, bentonite treatment (calcinations of natural bentonite at 700°C, washing by deionized water to remove the excess salt from bentonite surface), and agitation time on adsorption efficiency are studied. The washed and calcined bentonite samples were labeled by WB and CB, respectively. The pH-dependence of Fe(III) and Ni(II) sorption on the bentonite is significantly more noticeable, indicating a major contribution of surface complexation at the edge sites. It was determined that adsorption of Fe(III) and Ni(II) is well fitted by the second order reaction kinetic. Furthermore, the sorption rate of Fe(III) was higher than the sorption rate of Ni(II). Adsorption of Fe(III) and Ni(II) on NB appeared to follow Langmuir isotherm. In addition, calculated and experimental adsorbed amounts of Fe(III) by the unit NB mass are very higher than Ni(II). The paper also discusses the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy). Our results demonstrate that the adsorption process was spontaneous and endothermic under natural conditions. Also the adsorption capacity of bentonite for Fe(III) Ni(II) and increases with increased bentonite dose. According to the equilibrium studies, the selectivity sequence can be given as Fe(III) > Ni(II). The adsorbed amount of Fe(III) and Ni(II) on washed bentonite (WB) were very higher compared to NB and CB. Our results show that bentonite could especially WB be considered as a potential adsorbent for Fe(III) and Ni(II) removal from aqueous solutions.  相似文献   
9.
10.
ABSTRACT

The aim of the present work was to test low-resolution NMR to characterize and quantify the state of water in some clay materials such as illite, montmorillonite, and bentonite with water content and in a compacted state. Low-field 1H-NMR spectroscopy (0.54 T) was used to determine the most mobile fraction of water in different types of clay materials by analyzing free induction decay (FID) and Carr-Purcell-Meiboom-Gill (CPMG) relaxation curves at 20°C, ?7°C, and ?25°C. Results have shown that a fast exchange occurs between the first bound monolayer of water and the following ones for illite, montmorillonite, and bentonite; a multiexponential decay of some CPMG relaxation curves was also observed. FID measurements at ?25°C showed that 83% of the water in illite (41% water content), 44% in montmorillonite (31% w.c.), and 52% in bentonite (27% w.c.) is frozen at this temperature. Treatment of signals obtained with bentonite compacted in capillaries (28% w.c.) was complicated by a signal coming from the capillaries themselves and an increase in internal magnetic field gradients, which led to a dual quantification whose most likely result is 39% of freezable water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号