首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   33篇
  国内免费   64篇
化学   201篇
晶体学   19篇
力学   2篇
物理学   48篇
  2024年   1篇
  2023年   3篇
  2022年   13篇
  2021年   17篇
  2020年   17篇
  2019年   14篇
  2018年   7篇
  2017年   9篇
  2016年   13篇
  2015年   6篇
  2014年   9篇
  2013年   9篇
  2012年   13篇
  2011年   17篇
  2010年   6篇
  2009年   12篇
  2008年   10篇
  2007年   6篇
  2006年   10篇
  2005年   10篇
  2004年   4篇
  2003年   15篇
  2002年   3篇
  2001年   5篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   7篇
  1996年   1篇
  1994年   8篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
1.
以羧甲基纤维素(CMC)、明胶和MOF(Cu)@biochar为原料,采用简单有效的冷冻干燥方法制备了(CMC/Gelatin/MOF(Cu)@biochar)杂化气凝胶,并用傅里叶变换红外光谱(FT-IR)、热重分析(TG)、X射线粉末衍射(XRD)、扫描电镜(SEM)和X射线光电子能谱(XPS)技术对其进行了表征;研究了MOF(Cu)@biochar含量、pH和不同的盐水溶液对杂化气凝胶溶胀行为的影响;以该气凝胶负载氯化铵,制备了一种新型缓释肥料(SRF),并研究了含2%(wt)SRF的沙性土壤的保水能力;SRF在土壤中第30天的累积释放率为79.4%;肥料在土壤中释放符合非Fickian扩散和阳离子交换的协同作用机理。  相似文献   
2.
碳化硅块状气凝胶的制备及应用   总被引:1,自引:0,他引:1  
碳化硅气凝胶具有高温稳定性、低热膨胀系数、良好的抗热震性以及抗氧化和耐腐蚀等优异的性质,在高温和高腐蚀性环境下的隔热、电磁吸波、过滤和吸附等领域具有较大的应用潜力。然而,块状碳化硅气凝胶的可控制备一直是一项较大的挑战。本文综述了块状碳化硅气凝胶在制备工艺和应用两个方面的研究进展,首先分析总结了各种制备工艺及其优缺点,包括有机/SiO2复合气凝胶碳热还原法、预陶瓷化聚合物裂解法、化学气相沉积法、高温气相渗硅法和碳化硅纳米线组装法;然后,详细介绍了碳化硅气凝胶在高温隔热和电磁吸波两个领域的应用研究进展;最后,展望了碳化硅气凝胶未来的若干发展方向。  相似文献   
3.
To expand the applications of graphene-based materials to biogas purification, a series of reduced graphene oxide aerogels (rGOAs) were prepared from industrial grade graphene oxide using a simple hydrothermal method. The influences of the hydrothermal preparation temperature on the textural properties, hydrophobicity and physisorption behavior of the rGOAs were investigated using a range of physical and spectroscopic techniques. The results showed that the rGOAs had a macro-porous three-dimensional network structure. Raising the hydrothermal treatment temperature reduced the number of oxygen-containing groups, whereas the specific surface area (SBET), micropore volume (Vmicro) and water contact angle values of the rGOAs all increased. The dynamic adsorption properties of the rGOAs towards hexamethyldisiloxane (L2) increased with increasing hydrothermal treatment temperature and the breakthrough adsorption capacity showed a significant linear association with SBET, Vmicro and contact angle. There was a significant negative association between the breakthrough time and inlet concentration of L2, and the relationship could be reliably predicted with a simple empirical formula. L2 adsorption also increased with decreasing bed temperature. Saturated rGOAs were readily regenerated by a brief heat-treatment at 100 °C. This study has demonstrated the potential of novel rGOA for applications using adsorbents to remove siloxanes from biogas.  相似文献   
4.
An alumina-supported cobalt aerogel catalyst prepared from a sol-gel and a supercritical drying method was used in the catalytic decomposition of methane.The physical-chemical properties of the catalyst were characterized and its activity for methane decomposition was investigated.The effects of calcination and reaction temperatures on the activity of the catalyst and the morphology of the carbon nanotubes produced were discussed.A COAl2O4 spinel structure formed in the calcined catalyst.The quantity of the nanotubes produced in the reaction increases with the amount of cobalt in the reduced catalyst.A higher reaction temperature leads to a higher reaction rate,though faster deactivation of the catalyst occurs with the change.The carbon nanotubes grown on the catalyst have smooth walls and uniform diameter distribution.  相似文献   
5.
In this work, the interfacial mass balance relations combined with the non-parametric kinetic (NPK) analysis results were used for evaluating the thermo-chemical ablation process and oxidation mechanism of carbon aerogels with various porous structure. It was found that the two-parameter model of Nomen–Sempereis was able to describe the kinetics of the oxidation reaction and to reveal the structure-dependent contribution of two main processes with chemical and physical nature. The porosity of the carbon aerogel, rather than the other microstructural features, was realized more effective on the rate of ablation.  相似文献   
6.
Poly(ethylene‐co‐vinyl acetate) (EVA) plastic films are widely used for solar coverings including photovoltaic modules and commercial greenhouse films, but are poor at controlling heat flow. In this work, silica aerogel (SA) nanogels were examined for preparing transparent heat retention EVA films that block far infrared spectra radiation to maintain heat, without compromising the optical performance of the films. SA nanogels were melt‐mixed using a mini twin‐screw extruder with EVA pellets to form SA/EVA composite, which were pressed into thin films with controlled thickness. The composite films were characterized in terms of optical properties using a variety of analytical methods including FTIR, UV–Vis spectroscopy, electron, confocal, and atomic force microscopy. Both thermicity and thermal conductivity of commercial and experimental SA/EVA films were measured. The results demonstrated that the SA/EVA films gave improved infrared retention compared to commercial thermal plastic films without compromising visible light transmission, showing the potential for this approach in next generation heat retention films. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 927–935  相似文献   
7.
利用离子液体AmimCl溶解结合超临界CO2干燥的方法制备了纤维素气凝胶材料.研究了不同初始浓度的纤维素溶液及其在不同凝固浴中制备的纤维素凝胶的流变行为,进一步考察了纤维素溶液浓度和凝固浴种类对纤维素气凝胶材料结构的影响.结果表明,随着初始纤维素溶液浓度的增大,气凝胶的孔结构逐渐致密,比表面积随之减小;凝固浴的组成对纤维素气凝胶的结构也有较大影响.采用适当的制备条件,可以制备出高比表面积的纤维素气凝胶材料.对纤维素气凝胶的热性能进行了表征,结果表明所得到的气凝胶材料具有较好的热稳定性和较高的炭残余含量.  相似文献   
8.
Because of containing urea groups, flame resistance and smoke releasing behaviors of isocyanate-based polyimide foam (IBPIF) produced using free foaming technology require further improvement. In this work, silica aerogel layers were incorporated into cells of IBPIF through an in situ growth process of silica sol (SS). Compared with silica aerogel particles directly mixed into the foaming slurry, the silica aerogel layers that firmly attached to the pores and surfaces of cells not only provided exceptional thermal insulation and flame protection, but also kept original cellular structure. With increase in ratio of SS mass to IBPIF volume, silica aerogel incorporation dosage was gradually increased. Accompanied by flame resistance was obviously improved and smoke releasing behavior was effectively suppressed. Those were indicated by the improved limiting oxygen index (LOI), decreased heat release rate (HRR), peak of HRR, and specific optical density of smoke (Ds) in trials with pilot flames. Compared with pure IBPIF, when the ratio reached to 5/15 g/cm3, it resulted in LOI increasing from 22.0% to 33.0%, peak of HRR, total smoke production (TSP), and maximum value of Ds decreasing from 174 to 72 kW/m2, 1.11 to 0.37 m2/m2, 45.90 to 17.45, respectively.  相似文献   
9.
Ultralight flexible polymers enable promising application in many fields but are often hindered by low reusability with fatigue failure, weak mechanical stability and low temperature resistance. Here, superelastic polyimide nanofiber aerogels (PNFAs) with high hydrophobicity have been prepared by utilizing the polyamic acid (PAA) nanofibers to construct a continuous and isotropic fibrous architecture. “Fiber-bonding” effect is designed to endow the PNFAs with the structure-derived superelasticity. The results demonstrate that the PNFAs possess ultralight densities (9.7–19.1 mg cm−3), excellent absorption capacity (58 times for n-hexane), broad working-temperature range, high resilience after 1000 fatigue cycles at 60% strain, and outstanding thermal insulation performance. Analysis of 50 absorption-harvesting cycle tests reveals that these highly hydrophobic PNFAs possess an ultrahigh reusability. The compressed PNFAs return to their original shape after they are distilled to recover the absorbed pollutants. These PNFAs with high absorption capacity and robust mechanical stability are promising to be applied in a variety of industrial and environmental applications.  相似文献   
10.
In this work, the optical absorption and thermal properties of polyimide aerogel have been investigated by Infrared Camera, ultraviolet–visible and photoacoustic spectroscopy under low energy proton irradiation. The characterization method of the infrared camera can obtain the optical absorption ratio, and meanwhile get the information of specific heat capacity. Moreover, it can acquire the nature information of damaged area rather than the overall performance. The results show an increase in optical absorption after proton irradiation, which is in good coincidence with Ultraviolet–visible spectroscopy analysis. And the specific heat capacity decreased linearly with proton fluences, which can be attributed to the irradiation damage and carbonization in polyimide aerogel. The Raman spectra suggested the cleavage of chemical bonds and carbonization in polyimide aerogel. This work provides the novel, non-destructive and sensitive methods to characterize irradiation damage of aerogel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号