首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   14篇
  国内免费   71篇
化学   401篇
力学   3篇
综合类   1篇
物理学   17篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   10篇
  2018年   4篇
  2017年   14篇
  2016年   10篇
  2015年   12篇
  2014年   9篇
  2013年   42篇
  2012年   13篇
  2011年   9篇
  2010年   20篇
  2009年   10篇
  2008年   15篇
  2007年   26篇
  2006年   22篇
  2005年   25篇
  2004年   28篇
  2003年   16篇
  2002年   16篇
  2001年   16篇
  2000年   6篇
  1999年   12篇
  1998年   4篇
  1997年   5篇
  1996年   6篇
  1995年   22篇
  1994年   12篇
  1993年   12篇
  1992年   7篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
排序方式: 共有422条查询结果,搜索用时 15 毫秒
1.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   
2.
The homopolymerization of the water‐insoluble N‐(isobutoxymethyl)acrylamide (IBMA) is investigated for the first time by nitroxide‐mediated polymerization. The homopolymerization is characterized by a linear increase in number average molecular weight (Mn) versus conversion (X) to X > 0.80 while maintaining dispersities of Mw/Mn < 1.30. A strong Arrhenius relationship correlates the apparent rate constants and the homopolymerization temperatures between 105 and 120 °C. All poly(IBMA) homopolymers are then successfully chain‐extended with styrene (S) to form well‐defined block copolymers of poly(IBMA)‐b‐poly(S) suggesting a high degree of livingness of the poly(IBMA) macroinitiators. Thermogravimetric analysis and differential scanning calorimetry are both used to characterize the thermal properties of the homopolymers and block copolymers and identify possible unique degradation of the poly(IBMA) block through imide formation at elevated temperatures.

  相似文献   

3.
陈晓农 《高分子科学》2015,33(7):1048-1057
Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration during grafting polymerization. The results from pressure drop measurement of the mobile phase flowed cross the membrane demonstrate that an appropriate grafting ratio would be 8%-10%. Protein adsorption on the membrane through hydrophobic interaction could be promoted by increasing temperature and lyotropic salt concentration. The effect of grafted polymer structure on protein binding performance was studied. Filter paper grafted with NIPAM-based branched copolymer consisting of hydrophobic monomer moieties shows ten times higher protein binding capacity than that of the original filter paper. The separation of plasma proteins using the dual stimuli-responsive membrane was examined to demonstrate feasible application for hydrophobic interaction chromatographic separation of proteins.  相似文献   
4.
N‐(3‐Methoxypropyl) acrylamide (MPAM) was polymerized by controlled radical polymerization (CRP) methods such as nitroxide‐mediated polymerization (NMP) and reversible addition–fragmentation chain‐transfer polymerization (RAFT). CRP was expected to yield well‐defined polymers with sharp lower critical solution temperature (LCST) transitions. NMP with the BlocBuilder (2‐([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino]oxy)‐2‐methylpropanoic acid) and SG1 ([tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino] oxidanyl) initiating system revealed low yields and lack of control (high dispersity, ? ~ 1.5–1.6, and inhibition of chain growth). However, RAFT was far more effective, with linear number average molecular weight, , versus conversion, X, plots, low ? ~ 1.2–1.4 and the ability to form block copolymers using N,N‐diethylacrylamide (DEAAM) as the second monomer. Poly(MPAM) (with = 13.7–25.3 kg mol?1) thermoresponsive behavior in aqueous media revealed cloud point temperatures (CPT)s between 73 and 92 °C depending on solution concentration (ranging from 1 to 3 wt %). The and the molecular weight distribution were the key factors determining the CPT and the sharpness of the response, respectively. Poly(MPAM)‐b‐poly(DEAAM) block copolymer ( = 22.3 kg mol?1, ? = 1.41, molar composition FDEAAM = 0.38) revealed dual LCSTs with both segments revealing distinctive CPTs (at 75 and 37 °C for poly(MPAM) and poly(DEAAM) blocks, respectively) by both UV–Vis and dynamic light scattering. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 59–67  相似文献   
5.
We present novel redox‐responsive hydrogels based on poly(N‐isopropylacrylamide) or poly(acrylamide), consisting of a reversible disulfide crosslinking agent N,N′‐bis(acryloyl)cystamine and a permanent crosslinking agent N,N′‐methylenebisacrylamide for microfluidic applications. The mechanism of swelling/deswelling behavior starts with the cleavage and reformation of disulfide bonds, leading to a change of crosslinking density and crosslinking points. Raman and ultraviolet‐visible spectroscopy confirm that conversion efficiency of thiol–disulfide interchange up to 99%. Rheological analysis reveals that the E modulus of hydrogel is dependent on the crosslinking density and can be repeatedly manipulated between high‐ and low‐stiffness states over at least 5 cycles without significant decrease. Kinetic studies showed that the mechanical strength of the gels changes as the redox reaction proceeds. This process is much faster than the autonomous diffusion in the hydrogel. Moreover, cooperative diffusion coefficient (Dcoop) indicates that the swelling process of the hydrogel is affected by the reduction reaction. Finally, this reversibly switchable redox behavior of bulky hydrogel could be proven in microstructured hydrogel dots through short‐term photopatterning process. These hydrogel dots on glass substrates also showed the desired short response time on cyclic swelling and shrinking processes known from downsized hydrogel shapes. Such stimuli‐responsive hydrogels with redox‐sensitive crosslinkers open a new pathway in exchanging analytes for sensing and separating in microfluidics applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2590–2601  相似文献   
6.
The effect of the molecular weight on the lower critical solution temperature (LCST) has been discussed extensively, where LCST increased with molar mass, decreased or kept constant, which leads to confusion. This work is focused on the preparation of poly(N‐isopropyl acrylamide) homopolymers, obtained in a wide molecular weights range. The LCST behavior is analyzed by calorimetry and rheology, and a deep study of molecular features is carried out for a better knowledge of the influence of various parameters involved on LCST. Finally, the molecular weight trend is observed, and its influence on LCST is compared with the effect of other parameters as polymer concentration in water, end‐group effect, and tacticity. It is observed that other parameters such tacticity and end‐group effect will affect the LCST behavior over molecular weight, if this one is not high enough. Furthermore, the study of the LCST ranges will be a useful tool for analyzing the molecular weight trends. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1386–1393  相似文献   
7.
材料表面的微结构会赋予材料独特的性能,水凝胶在生物医学领域有广泛的应用前景。采用紫外光刻蚀法创新性地实现了复合凝胶的制备和凝胶表面图案化微结构的构筑一步完成;通过原子力显微镜和光学显微镜的表征,复合凝胶聚N-异丙基丙烯酰胺/聚乙二醇二丙烯酸酯兼具了温敏性能与图案化微结构的新颖性能结构特征。本实验有助于培养学生的创新意识,激发学生的学习兴趣以及未来从事科研的兴趣。  相似文献   
8.
Acetochlor is an important herbicide for gramineous weeds and some small seed broadleaf weeds. Controlled-release formulations of herbicide are highly desirable not only for attaining the most effective utilisation of the weed control, but also for reducing environmental pollution. Acetochlor was incorporated in poly (butyl methacrylate-diacetone acrylamide) based formulation to obtain controlled release properties. The acetochlor nanocapsules were characterised by size distribution, infrared spectroscopy (IR) and field emission scanning electron microscopy (FESEM), and factors related to loading efficiency, swelling behaviour of the formulation were investigated. For this controlled-release formulation, the loading efficiency could reach about 50% (w/w). n, the diffusion parameter was indicative of the transport mechanism, and the values for ‘n’ were in the range of 0.28–0.61, which indicated that the release of acetochlor was diffusion-controlled. The time taken for 50% of the active ingredient to be released into water, t50, was also calculated for the comparison of formulations in different conditions. The formulation with higher temperature and more diacetone acrylamide had lower value of t50, which means a quicker release of the active ingredient. This study highlighted some pieces of evidence that improved herbicide incorporation and slower release were linked to potential interactions between the herbicide and the polymer.  相似文献   
9.
N‐isopropyl acrylamide (NIPAAm) hydrogels are known as thermosensitive crosslinked polymer networks. In this work, the network parameters of their composites, i.e., NIPAAm/sodium montmorillonite (NIPAAm/Na+MMT) hydrogels synthesized by free radical solution polymerization in the presence of two different types of accelerator (tetramethyl ethylenediamine (TEMED) and ethylenediamine tetraacetic acid (EDTA)) and initiator (potassium persulphate (K2S2O8) and cerium ammonium nitrate ((NH4)2Ce(NO3)6), Ce(IV)) using five different clay content (in the range of 1.0–5.0 wt % of total monomer concentration) at 25 °C were presented and discussed. FTIR spectra, XRD patterns, SEM photographs, and network parameters of the samples indicated that the presence of COOH groups on EDTA molecules was resulted in the formation of exfoliated structures and the activity of EDTA/KPS redox pair was higher than those of TEMED/KPS and EDTA/Ce (IV) pairs. The compression moduli (G) of the hydrogels initiated with EDTA/Ce(IV) redox pair showed smooth and continual changings with increase in Na+MMT content (for swelling equilibrium at 25 °C) on the contrary of EDTA/KPS and TEMED/KPS pairs. It might be related to low initiator efficiency of cerium ammonium nitrate than KPS molecules, having higher effective crosslinking density with increasing clay content. On the other hand, the G moduli of NIPAAm/Na+MMT hydrogels (above their phase transition temperature) initiated with TEMED/KPS redox pair were higher than the others because of the more hydrophobic nature of TEMED molecules. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1256–1264, 2010  相似文献   
10.
In this article, we report on the viscoelastic and thermal properties of agarose–polyacrylamide (PAAm) interpenetrating polymer hydrogels (IPHs) and semi‐IPHs as a function of agarose concentration and PAAm crosslinking degree. The results demonstrated that the agarose is able to gel in the presence of crosslinked and linear IPHs. In addition, the reticulation of PAAm in the presence of agarose is confirmed for the case of IPHs giving rise to systems with dimensional stability at high temperatures. The formation of a fully IPH was ascertained at low agarose concentrations. A study of the morphology and nanoscale elasticity of the different systems has been carried out with atomic force microscopy/ultrasonic force microscopy (UFM). UFM data provide further evidence of interpenetration, allowing us to visualize—if present—phase‐separated domains with nanoscale resolution for the various crosslinking degrees and PAAm and agarose concentrations used during the formation of the IPHs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号