首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   46篇
  国内免费   50篇
化学   996篇
晶体学   1篇
物理学   22篇
  2023年   11篇
  2022年   9篇
  2021年   15篇
  2020年   15篇
  2019年   22篇
  2018年   11篇
  2017年   25篇
  2016年   21篇
  2015年   24篇
  2014年   30篇
  2013年   37篇
  2012年   84篇
  2011年   47篇
  2010年   51篇
  2009年   65篇
  2008年   66篇
  2007年   72篇
  2006年   67篇
  2005年   49篇
  2004年   70篇
  2003年   45篇
  2002年   31篇
  2001年   19篇
  2000年   12篇
  1999年   12篇
  1998年   17篇
  1997年   19篇
  1996年   11篇
  1995年   8篇
  1994年   18篇
  1993年   9篇
  1992年   7篇
  1991年   10篇
  1990年   3篇
  1989年   6篇
  1988年   1篇
排序方式: 共有1019条查询结果,搜索用时 140 毫秒
1.
Silver microelectrode arrays are fabricated by photolithography for a one-step analysis of H2O2 in low ionic strength samples. The effects of electrode length, width, band-to-band separation, connection height, and adhesion layer are evaluated. The developed sensor shows excellent repeatability (RSD=1.20 % (n=5)) and reproducibility (RSD=1.12 % (n=5)) with the linear range of 0.0–10.0 mM, the sensitivity of 9.84±0.34 μA mM−1, and the detection limit of 22.69 μM. The sensor has been successfully applied to detect H2O2 directly without the addition of supporting electrolyte in synthetic urine, tap water, drinking water, and milk samples.  相似文献   
2.
Here, we report multiwalled carbon nanotubes (MWCNTs) functionalized with γ-cyclodextrins (γCD) as a novel electrochemical strategy for Rutin determination, showing superior performance than β-cyclodextrins (βCD) modified MWCNTs, suggesting an adequate environment for host-guest interactions. Under optimized conditions, the sensor showed a linear range of 39–975 nmol L−1 and a limit of detection of 7 nmol L−1. When tested with quercetin, catechin, and caffeine, the platform presented high selectivity with an interference response <10 %. The method was employed to quantify Rutin in spiked pharmaceutical and herbal extracts, providing recovery of 93–98.4 %. Also, HPLC-PDA confirmed the method‘s accuracy.  相似文献   
3.
This work describes the sensitive voltammetric determination of favipiravir (FAV) based on its reduction for the first time with a low-cost and disposable pencil graphite electrode (PGE). In addition, the determination of FAV was also performed based on its oxidation. Differential pulse (DP) voltammograms recorded in 0.5 M H2SO4 for the reduction of FAV show that peak currents increase linearly in the range of 1.0 to 600.0 μM with a limit of detection of 0.35 μM. The acceptable recovery values (98.9–106.0 %) obtained from a pharmaceutical tablet, real human urine, and artificial blood serum samples spiked with FAV confirm the high accuracy of the proposed method.  相似文献   
4.
A simple and rapid voltammetric method based on a disposable electrochemically pretreated screen‐printed carbon electrode is proposed for the determination of L ‐dopa. Under optimum differential pulse voltammetry conditions a limit of detection of 3.6×10?7 M for L ‐dopa was obtained. The method was successfully applied to the determination of L ‐dopa in a commercial pharmaceutical formulation.  相似文献   
5.
A microwire chronoamperometric method is reported employing a 25 µm diameter platinum microwire for multi‐parameter electroanalysis with digital simulation‐based evaluation (employing DigiElch 4.F). Concentration and diffusion coefficient data are obtained for the reduction of oxygen and for the reduction of protons individually and simultaneously in saline (0.1 M to 4.0 M NaCl) electrolyte media. The diffusion coefficient and concentration data for oxygen allows salinity levels to be estimated. The microwire chronoamperometry method offers versatility and precision due to (i) a slow approach to steady state (when compared to microdisc methods) and (ii) insignificant viscosity effects (when compared to hydrodynamic methods).  相似文献   
6.
A novel electrochemical sensor for sensitive detection of methyldopa at physiological pH was developed by the bulk modification of carbon paste electrode (CPE) with graphene oxide nanosheets and 3‐(4′‐amino‐3′‐hydroxy‐biphenyl‐4‐yl)‐acrylic acid (3,′AA). Applying square wave voltammetry (SWV), in phosphate buffer solution (PBS) of pH 7.0, the oxidation current increased linearly with two concentration intervals of methyldopa, one is 1.0×10?8–1.0×10?6 M and the other is 1.0×10?6–4.5×10?5 M. The detection limit (3σ) obtained by SWV was 9.0 nM. The modified electrode was successfully applied for simultaneous determination of methyldopa and hydrochlorothiazide. Finally, the proposed method was applied to the determination of methyldopa and hydrochlorothiazide in some real samples.  相似文献   
7.
8.
An antimony film electrode prepared on‐line and installed as part of a sequential injection system, was used as an electrochemical detector to determine azo dyes in food samples. The influence of several flow variables were evaluated using a central composite design. In optimal conditions, the linear range of the calibration curve varied from 1–5 µM, with a limit of detection limit of 0.3 µM. The relative standard deviation of analytical repeatability was <5.0 %.The method was validated by comparing the results obtained with those provided by HPLC; no significant difference were seen.  相似文献   
9.
Tau protein undergoes complex biochemical processes involved in normal and diseased cellular functions; specifically, tau pathology has been linked to neurodegeneration. At the heart of tau biochemistry are three pillars: microtubules, phosphorylation, and aggregation. However, these three processes are also regulated through other biomolecules in the biological setting, such as metal ions and small and larger ligands, including proteins and nucleic acids. This review describes the latest electrochemical approaches toward greater understanding of tau biochemistry, early disease diagnosis, and drug inhibitor screening.  相似文献   
10.
In this article, we introduced a novel electrochemical biosensor for the detection of microRNA-126. The biosensor utilizes a hybridization assay combined with multi-walled carbon nanotubes and gold nanorod-decorated screen-printed carbon electrodes. For electrode preparation, gold nanorods were first immobilized onto the surface of bare and multi-walled carbon nanotube-modified screen-printed carbon electrodes, and the thiol tagged-capture probe was immobilized on the electrode surface through gold and thiol group interaction. After the immobilization, thiol tagged-capture probe hybridized with the target sequence. Under optimum conditions, we determined limit of detection (LOD) and limit of quantification (LOQ) as high as 11 nM and 36 nM, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号