首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   4篇
  国内免费   19篇
化学   120篇
晶体学   2篇
物理学   8篇
  2021年   4篇
  2020年   5篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   6篇
  2012年   11篇
  2011年   7篇
  2010年   7篇
  2009年   7篇
  2008年   9篇
  2007年   13篇
  2006年   6篇
  2005年   8篇
  2004年   3篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
1.
The utility of the quartz crystal microbalance (QCM) as a high‐frequency rheometer operating at 15 MHz was demonstrated. High‐frequency data obtained from a series of rubbery materials were compared with results obtained from traditional dynamic mechanical analysis (DMA) at much lower frequencies. The high‐frequency data enable meaningful shift factors to be obtained at temperatures much further above glass‐transition temperature (T g) than would otherwise be possible, giving a more complete picture of the temperature dependence of the viscoelastic properties. The QCM can also be used to quantify mass uptake and changes in viscoelastic properties during sample oxidation. The viscoelastic response spanning the full range of behaviors from the rubber to glassy regimes was found to fit well with a six‐element model consisting of three power‐law springpot elements. One of these elements is particularly sensitive to the behavior in the transition regime where the phase angle is maximized. The value of this quantity is obtained from the maximum phase angle, which can be obtained from a temperature sweep at fixed frequency, proving a means for more detailed frequency‐dependent rheometric information to be obtained from a fixed‐frequency measurement at a range of temperatures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1246–1254  相似文献   
2.
杜滨阳 《高分子科学》2015,33(11):1516-1526
The novel microgels, poly[di(ethylene glycol) methyl ether methacrylate-co-2-methoxyethyl acrylate] poly(DEGMMA-co-MEA) microgels, were synthesized. The poly(DEGMMA-co-MEA) microgels were thermo-sensitive and exhibited a volume phase transitive temperature(VPTT) of 14–22 ?C. The incorporation of hydrophobic comonomer MEA shifted the VPTT of poly(DEGMMA-co-MEA) microgels to lower temperatures. The interfacial interaction of poly(DEGMMA-co-MEA) microgels and three model proteins, namely fibrinogen, bovine serum albumin and lysozyme, was investigated by quartz crystal microbalance(QCM). An injection sequence of "microgel-after-protein" was then established for the real-time study of the interaction of proteins and the microgels at their swollen and collapsed states by using QCM technique. The results indicated that the interfacial interaction of poly(DEGMMA-co-MEA) microgels and adsorbed protein layers was mainly determined by the electrostatic interaction. Because poly(DEGMMA-co-MEA) microgels were negatively charged in Tris-HCl buffer solution(p H = 7.4), the microgels did not adsorb on negatively charged fibrinogen and bovine serum albumin layers but strongly adsorbed on positively charged lysozyme layer. Stronger interaction between lysozyme and the microgels at collapsed state(i.e. at 37 ?C) was observed. Furthermore, the incorporation of MEA might weaken the interaction between poly(DEGMMA-co-MEA) microgels and proteins.  相似文献   
3.
Coatings based on dendritic polyglycerol (dPG) were investigated for their use to control nonspecific protein adsorption in an assay targeted to analyze concentrations of a specific protein. We demonstrate that coating of the sample vial with dPG can significantly increase the recovery of an antibody after incubation. First, we determine the concentration dependent loss of an antibody due to nonspecific adsorption to glass via quartz crystal microbalance (QCM). Complementary to the QCM measurements, we applied the same antibody as analyte in an surface plasmon resonance (SPR) assay to determine the loss of analyte due to nonspecific adsorption to the sample vial. For this purpose, we used two different coatings based on dPG. For the first coating, which served as a matrix for the SPR sensor, carboxyl groups were incorporated into dPG as well as a dithiolane moiety enabling covalent immobilization to the gold sensor surface. This SPR-matrix exhibited excellent protein resistant properties and allowed the immobilization of amyloid peptides via amide bond formation. The second coating which was intended to prevent nonspecific adsorption to glass vials comprised a silyl moiety that allowed covalent grafting to glass. For demonstrating the impact of the vial coating on the accuracy of an SPR assay, we immobilized amyloid beta (Aβ) 1-40 and used an anti-Aβ 1-40 antibody as analyte. Alternate injection of analyte into the flow cell of the SPR device from uncoated and coated vials, respectively gave us the relative signal loss (1 − RUuncoated/RUcoated) caused by the nonspecific adsorption. We found that the relative signal loss increases with decreasing analyte concentration. The SPR data correlate well with concentration dependent non-specific adsorption experiments of the analyte to glass surfaces performed with QCM. Our measurements show that rendering both the sample vial and the sensor surface is crucial for accurate results in protein assays.  相似文献   
4.
《Analytical letters》2012,45(9):1751-1760
ABSTRACT

The generation of large changes in the crystal frequency is a highly sought-after goal in designing a successful thickness-shear mode (TSM) acoustic wave sensor application. We examined the potential for modulating the mass loading and viscoelastic properties of a swellable polymeric coating to achieve this goal. Using a 10 MHz AT-cut crystal with an immobilized coating of a styrene-divinylbenzene copolymer, a high molecular weight target analyte with complementary ionic and molecular binding properties was selected. Injection of the antibiotic cefoperazone in a sodium acetate buffer generated exceptionally large changes in frequency, in the range 500 - 5000 Hz. The rate of change in frequency is proportional to the analytical concentration. A multi-step regeneration protocol allows the coating to be reused multiple times. These results suggest that TSM sensor sensitivities can be significantly enhanced for selected analytes by the judicious selection of an appropriate swellable polymer coating.  相似文献   
5.
Porphyrin-filled nanofibrous membranes were facilely prepared by electrospinning of the mixtures of poly(acrylonitrile-co-acrylic acid)(PANCAA) and porphyrins. 5,10,15,20-Tetraphenylporphyrin(TPP) and its metal-loderivatives(ZnTPP and CuTPP) were studied as filling mediators for the immobilization of redox enzyme. Results indicate that the introduction of TPP, ZnTPP and CuTPP improves the retention activity of the immobilized catalase. Among these three porphyrins, the ZnTPP-filled PANCAA nanofibrous membra...  相似文献   
6.
Summary: Quartz crystal microbalance with dissipation monitoring (QCM‐D) is employed to determine the effect of salt on the volume phase transition of thermoresponsive polymer brushes. Changes in mass and viscoelasticity of poly(N‐isopropylacrylamide) (PNIPAM) layers grafted from a QCM‐D crystal are measured as a function of temperature, upon contact with aqueous solutions of varying salt concentrations. The phase‐transition temperature of PNIPAM brushes, TC,graft, quantified from the QCM‐D measurements is found to decrease as the concentration of salt is increased. This phenomenon is explained by the tendency of salt ions to affect the structure of water molecules (Hofmeister effect). However, in contrast to the linear decrease in phase‐transition temperature upon increasing salt concentration observed for free PNIPAM, the trend in TC,graft for PNIPAM brushes is distinctively non‐linear.

Schematic representation of the effect of salt concentration on the phase transition behavior of thermoresponsive polymer brushes.  相似文献   

7.
C. March  Y. Jiménez  A. Montoya 《Talanta》2009,78(3):827-1971
A quartz crystal microbalance (QCM) immunosensor was developed for the determination of the insecticide carbaryl and 3,5,6-trichloro-2-pyridinol (TCP), the main metabolite of the insecticide chlorpyrifos and of the herbicide triclopyr. The detection was based on a competitive conjugate-immobilized immunoassay format using monoclonal antibodies (MAbs). Hapten conjugates were covalently immobilized, via thioctic acid self-assembled monolayer (SAM), onto the gold electrode sensitive surface of the quartz crystal. This covalent immobilization allowed the reusability of the modified electrode surface for at least one hundred and fifty assays without significant loss of sensitivity. The piezoimmunosensor showed detection limits (analyte concentrations producing 10% inhibition of the maximum signal) of 11 and 7 μg l−1 for carbaryl and TCP, respectively. The sensitivity attained (I50 value) was around 30 μg l−1 for both compounds. Linear working ranges were 15-53 μg l−1 for carbaryl and 13-83 μg l−1 for TCP. Each complete assay cycle took 20 min. The good sensitivity, specificity, and reusability achieved, together with the short response time, allowed the application of this immunosensor to the determination of carbaryl and TCP in fruits and vegetables at European regulatory levels, with high precision and accuracy.  相似文献   
8.
This study reports the fouling of carboxymethyl dextran (CMD) layers in cell culture medium, fibronectin, and serum solutions. CMD layers were covalently immobilized onto amine groups available either on an n-heptylamine plasma polymer (HApp) layer or onto a polyethylenimine (PEI) coating grafted to an acetaldehyde plasma polymer (AApp) layer. The successful immobilization of the graft layers was demonstrated by X-ray photoelectron spectroscopy (XPS). Primary amines on HApp and AApp + PEI surfaces were quantified using a colorimetric assay. Quartz crystal microbalance (QCM) was used to investigate in real-time the fouling of the graft layers upon incubation in cell culture medium (RPMI), fibronectin, and foetal bovine serum (FBS) solutions. HApp, AApp and AApp + PEI layers exhibited large fouling in fibronectin and FBS solutions, while fouling in RPMI cell culture medium was not significant. Protein repellent properties of CMD layers in FBS and fibronectin have been demonstrated compared to the other tested surfaces. QCM has shown that both CMD layers were fouled to a small extent in RPMI medium.  相似文献   
9.
莫志宏  仇伟  严俊  顾子迪 《高分子学报》2008,(12):1149-1153
以(NH4)2S2O8(APS)为氧化剂,十二烷基苯磺酸(DBSA)同时为乳化剂和掺杂剂,采用乳液聚合方法制备聚苯胺膜(PANIfilm),用石英晶体微天平(QCM)实时监测聚苯胺膜的形成过程,并对其动力学过程进行研究.结果表明,聚苯胺成膜反应对APS是0.5级,对苯胺是1级,聚苯胺膜增长速率随温度的升高而增加,而聚苯胺膜的最终沉积量却减小,表观活化能Ea=41.15kJ/mol,与均相溶液聚合成膜法的结果相近;随着DBSA浓度的增加,聚苯胺膜增长速率减小,而最终的沉积量增大.  相似文献   
10.
We investigated hydration and swelling behavior of a solid state photoresponsive copolymer in water by using a quartz crystal microbalance technique with dissipation measurement (QCM-D technique). On the gold film electrode of a quartz resonator, we deposited a thin layer of a pNSp-NIPAAm, which is a poly(N-isopropylacrylamide) (pNIPAAm) polymer partially modified with a photochromic chromophore, 6-nitrospiropyran (NSp). Using QCM-D measurements, we found that at a temperature of 19 °C both water adsorption and changes in the viscoelasticity of the solid pNSp-NIPAAm layer were induced when pNSp-NIPAAm was irradiated by 365 nm ultraviolet light, which triggers the photoisomerization of the NSp chromophore and makes the structure of the chromophore hydrophilic. At temperatures between 25 and 35 °C, this photo-induced hydration was not observed. These observations suggest that the photoisomerization of the NSp chromophores triggered the photo-induced hydration only when pNIPAAm component is sufficiently hydrophilic, at a temperature of 19 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号