首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   28篇
  国内免费   75篇
化学   202篇
晶体学   10篇
力学   1篇
综合类   1篇
物理学   75篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   10篇
  2020年   10篇
  2019年   11篇
  2018年   8篇
  2017年   10篇
  2016年   13篇
  2015年   10篇
  2014年   11篇
  2013年   18篇
  2012年   18篇
  2011年   21篇
  2010年   17篇
  2009年   15篇
  2008年   14篇
  2007年   11篇
  2006年   14篇
  2005年   5篇
  2004年   11篇
  2003年   3篇
  2002年   9篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1985年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
1.
In the present report, Nickel oxide nanoparticles (NiONPs) were synthesized using Rhamnus virgata (Roxb.) (Family: Rhamnaceae) as a potential stabilizing, reducing and chelating agent. The formation, morphology, structure and other physicochemical properties of resulting NiONPs were characterized by Ultra violet spectroscopy, X‐ray diffraction (XRD), Fourier Transform Infrared analysis (FTIR), Scanning electron microscopy (SEM), Energy‐dispersive‐spectroscopy (EDS), Transmission electron microscopy (TEM), Raman spectroscopy and dynamic light scattering (DLS). Detailed in vitro biological activities revealed significant therapeutic potential for NiONPs. The antimicrobial efficacy of biogenic NiONPs was demonstrated against five different gram positive and gram negative bacterial strains. Klebsiella pneumoniae and Pseudomonas aeruginosa (MIC: 125 μg/mL) were found to be the least susceptible and Bacillus subtilis (MIC: 31.25 μg/mL) was found to be the most susceptible strain to NiONPs. Biogenic NiONPs were reported to be highly potent against HepG2 cells (IC50: 29.68 μg/ml). Moderate antileishmanial activity against Leishmania tropica (KMH23) promastigotes (IC50: 10.62 μg/ml) and amastigotes (IC50: 27.58 μg/ml) cultures are reported. The cytotoxic activity was studied using brine shrimps and their IC50 value was recorded as 43.73 μg/ml. For toxicological assessment, NiONPs were found compatible towards human RBCs (IC50: > 200 μg/ml) and macrophages (IC50: > 200 μg/ml), deeming particles safe for various applications in nanomedicines. Moderate antioxidant activities: total antioxidant capacity (TAC) (51.43%), 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) activity (70.36%) and total reducing power (TRP) (45%) are reported for NiONPs. In addition, protein kinase and alpha amylase inhibition assays were also performed. Our results concluded that Rhamnus virgata synthesized NiONPs could find important biomedical applications with low cytotoxicity to normal cells.  相似文献   
2.
Nickel oxide (NiO) nanostructures are employed in the basic medium for the oxidation of ethanol. A variety of NiO nanostructures are synthesized by wet chemical growth method, using different hydroxide (OH?) ion sources, particularly from ammonia, hexamethylenetetramine, urea and sodium hydroxide. The use of urea as (OH?) ion source results in flower‐like NiO structures composed by extremely thin nanowalls (thickness lower than 10 nm,), which demonstrated to be the most active for ethanol oxidation. All the samples exhibit NiO cubic phase, and no other impurity was detected. The cyclic voltammetry (CV) curves of NiO nanostructures were found linear over the concentration range 0.1–3.5 mM (R2=0.99) of ethanol, with the limit of detection estimated to be 0.013 mM for ethanol. The NiO nanostructures exhibit a selective signal towards ethanol oxidation in the presence of different members of alcohol family. The proposed NiO nanostructures showed a significant practicality for the reproducible and sensitive determination of ethanol from brandy, whisky, mixture of brandy and rum, and vodka samples. The nanomaterial was used as a surface modifying agent for the glassy carbon electrode and it showed a stable electro‐oxidation activity for the ethanol for 16 days. These findings indicate that the presented NiO nanomaterial can be applied in place of noble metals for ethanol sensing and other environmental applications (like fuel cells).  相似文献   
3.
《印度化学会志》2023,100(3):100908
Water is an important item for the survival of humans, animals and plants in the planet earth. In the industrialized world, water pollution is raising every day, mainly in the textile, paper, medicine, and plastic production industries. Pollution from coloured compounds is primarily identified as being the major threat to wastewater. In the absence of any pre-treatment, substituted phenols, dyes and agricultural wastes seriously contaminate groundwater systems. For the removal of dyes from the industrial waste water, the following three traditional methods are used: chemical, physical and biological but, the cost of the methods little high. For alternation of these methods, now a days photocatalytic degradation method was used. Metal and metal oxide nanoparticles are excellent catalysts for reducing and degrading aqueous phase nitro compounds and aromatic dyes. Nanoparticles are commonly assembled into two types, i.e., organic (carbon nanoparticles) and inorganic (metal, semiconductor and magnetic nanoparticles) nanoparticles. In this review article we are mainly focused on the behaviour of different types of pure metal oxides and metal oxide@metal/metal oxide/carbon/polymer nanocomposites for the removal of various organic pollutants from water and their efficiency has been reported. As a result of their review the cerium-based metal oxides such as CdS/CeO2, CeO2/Y2O3, GQDs/CeO2 and Ag/cellulose@CeO2/QDs shows more degradation efficiency (above~95%) towards the organic pollutants when compared to other metal oxides.  相似文献   
4.
Encapsulation of nickel oxide (NiO) particles is of great interest to the researchers as such modification produces remarkable improvement in properties and versatility in application potential. In this investigation, nanosized NiO particles were first prepared by calcination of nickel hydroxide precursor obtained using a simple liquid‐phase process. The produced NiO particles were stabilized with oleic acid and then treated with tetraethylorthosilicate to produce NiO/SiO2 composite seed particles. Finally tri‐layered inorganic/organic composite particles were prepared by seeded copolymerization of styrene and 2‐hydroxyethyl methacrylate (HEMA) in the presence of NiO/SiO2 composite seed particles. The produced composite particles named as NiO/SiO2/P(S‐HEMA) were colloidally stable, and the obtained particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy and thermogravimetric analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
This work designed and prepared a novel heterojunction composite NiO/BaTiO3 through a method of photodeposition and used it in piezocatalytic dye removal for the first time. Results of the piezocatalytic test indicated that the NiO/BaTiO3 composite presented superior efficiency and stability in the RhB degradation under the vibration of ultrasonic waves. The best NiO/BaTiO3 sample synthesized under light irradiation for 2 h displayed an RhB degradation rate of 2.41 h−1, which was 6.3 times faster than that of pure BaTiO3. By optimizing the piezocatalytic reaction conditions, the degradation rate constant of NiO/BaTiO3 can further reach 4.14 h−1 A variety of systematic characterizations were executed to determine the reason for the excellent piezocatalytic performance of NiO/BaTiO3. The band potentials of NiO and BaTiO3 are found to coincide, and at their contact interface, they may create a type-II p-n heterojunction structure. Driven by the potential difference and the built-in electric field, piezoelectrically enriched charge carriers can migrate between NiO and BaTiO3, resulting in improved efficiency in charge separation and an increase in the piezoelectric catalytic performance. This study may provide a potential composite catalyst and a promising idea for the design of highly efficient catalysts in the field of piezoelectric catalysis.  相似文献   
6.
In this article, Z-scheme NiO/α-MoO3 p-n heterojunction is successfully synthesized by a facile hydrothermal route. The phase and nanostructures are researched through a series of characterizations, such as XRD, SEM, TEM, EDX, XPS and DRS. It is confirmed that the NiO nanoparticles are deposited homogeneously on one dimensional α-MoO3 nanobelts and p-n heterojuction is constructed at the interface of α-MoO3 and NiO. Photocatalytic activity of the as-synthesized photocatalysts is investigated by photodegradation of methylene blue (MB) under simulated solar light irradiation. Compared with bare α-MoO3, the NiO/α-MoO3 p-n heterojunction exhibits significantly improved photocatalytic activity and photostability for MB degradation. The improvement in the photocatalytic performance can be attributed to the optimization of the charge transport pathway offered by Z-scheme heterojunctions, which can promote the effective separation of electron-hole pairs. The results indicate that Z-scheme NiO/α-MoO3 p-n heterojunction is a novel and efficient photocatalyst with potential application for the removal of organic contaminant in wastewater.  相似文献   
7.
本文通过微波辅助的方法,快速而有效地在热膨胀石墨烯(RG)的缺陷上原位合成氧化镍纳米颗粒,形成石墨烯/氧化镍复合材料(RG/NiO)。利用X-射线衍射(XRD),拉曼光谱(Raman),傅里叶变换红外(FTIR),扫描电镜(SEM),透射电镜(TEM),热重-差热(TGA-DSC)对所制备样品的结构、形貌和NiO含量在复合材料中的含量进行表征。结果表明,热膨胀石墨烯层数约7~8层,层间距约为0.35nm,缺陷多,在水热和微波处理后抗氧化性明显变差。复合材料中氧化镍颗粒平均粒径为25nm,均匀而密集地分散在石墨烯平面上,同时在复合材料中的含量为19.8%。  相似文献   
8.
NiO nanoparticles with an average size of 15 nm were easily prepared via the thermal decomposition of the tris(ethylenediamine)Ni(II) nitrate complex [Ni(en)3](NO3)2 as a new precursor at low temperature, and the nanoparticles were characterized by thermal analysis (TGA/DTA), X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR), UV-Vis spectroscopy, BET specific surface area measurement, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and magnetic measurements. The magnetic measurements confirm that the product shows a ferromagnetic behavior at room temperature, which may be ascribed to a size confinement effect. The NiO nanoparticles prepared by this method could be an appropriate photocatalytic material due to a strong absorption band at 325 nm. This method is simple, fast, safe, low-cost and also suitable for industrial production of high purity NiO nanoparticles for applied purposes.  相似文献   
9.
The citric acid/nickel acetate composite hollow fibers were prepared by using sol-gel processing and co-electrospinning technique. The polycrystalline NiO hollow nanostructured fibers were prepared after calcination. The obtained hollow nanostructured fibers made up of 17~25 nm nanocrystals were about 150 nm to several micrometers in outer diameter. The hollow NiO nanostructured fibers have been characterized by TG, DSC, SEM, FTIR, and XRD techniques. The results showed that the morphology of NiO hollow fibers was obviously influenced by the calcination temperature.  相似文献   
10.
Porous NiO nanowall arrays (NWAs) grown on flexible Fe-Co-Ni alloy have been successfully synthesized by using nullaginite (Ni2(OH)2CO3) as precursor and investigated as supercapacitor electrodes. In details, we adopted a simple hydrothermal method to realize Ni2(OH)2CO3 NWAs and examined their robust mechanical adhesion to substrate via a long-time ultrasonication test. Porous NiO NWAs were then obtained by a post-calcination towards precursors at 500 °C in nitrogen atmosphere. Electrochemical properties of as-synthesized NiO NWAs were evaluated by cyclic voltammetry and galvanostatic charge/discharge; porous NiO NWAs electrode delivered a specific capacitance of 270 F/g (0.67 A/g); even at high current densities, the electrode could still deliver a high capacitance up to 236 F/g (13.35 A/g). Meanwhile, it exhibited excellent cycle lifetime with ∼93% specific capacitance kept after 4000 cycles. These results suggest that as-made porous NiO NWAs electrode is a promising candidate for future thin-film supercapacitors and other microelectronic systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号