首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   6篇
  国内免费   35篇
化学   89篇
晶体学   2篇
力学   2篇
物理学   58篇
  2023年   5篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   5篇
  2010年   9篇
  2009年   7篇
  2008年   16篇
  2007年   22篇
  2006年   12篇
  2005年   6篇
  2004年   4篇
  2003年   8篇
  2002年   3篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1995年   3篇
排序方式: 共有151条查询结果,搜索用时 156 毫秒
1.
《中国化学快报》2020,31(6):1593-1597
As one of the most environmentally friendly photovoltaic(PV) conversion equipments,aqueousprocessed CdTe nanocrystal solar cells(NC SCs) have attracted great interest in recent years because of their excellent properties such as high charge-carrier mobility and broad absorption.However,two issues including interfacial recombination and leakage current seriously restrict their performance.In this paper,insulating polymer poly(vinyl pyrrolidone)(PVP) is introduced into CdTe NC SCs to solve the problems.The experimental results of transmission electron microscopy(TEM),atomic force micro scopy(AFM) and dark current measurements,etc.,demonstrate the leakage current is effectively suppressed by introducing PVP.Through further designing device structure,the reduction of interfacial recombination after introducing PVP is confirmed.By strategically taking the advantages of PVP properties(e.g.,water solubility and thermostability),the power conversion efficiency of the devices with PVP is enhanced by almost 37% compared to pure CdTe devices.This work demonstrates an effective and low-cost method to fabricate NC SCs via aqueous route.Moreover,it also proves that appropriate content of insulating polymer is of beneficial in promoting the PV performance.  相似文献   
2.
利用不含有机相的简单水热法制备了Co^2+∶ZnS纳米晶,纳米晶具有立方闪锌矿结构,平均晶粒尺寸约为8.3 nm,在808 nm激光泵浦下具有2~5μm波段的中红外荧光发射,中心波长位于3400 nm和4700 nm,分别对应Co^2+离子的4T2(F)→4 A 1(F)和4T1(F)→4T2(F)的能级跃迁.进一步将制备的纳米晶在还原气氛下进行800℃热处理,获得立方闪锌矿和纤锌矿混合晶型的纳米晶,平均晶粒尺寸增大到22.5 nm左右,热处理后的纳米晶表面羟基含量更低,中红外荧光发射强度显著提高.该Co^2+∶ZnS纳米晶的制备方法简单、在制备过程中不引入有机相等荧光淬灭中心,同时证明通过后热处理过程可以进一步减少表面缺陷及羟基含量,使荧光强度得到大幅提升.  相似文献   
3.
Coherent exciton-phonon coupling in CdSe/ZnS nanocrystals have been investigated by temperature-dependent two-dimensional electronic spectroscopy (2DES) measurements. Benefiting from the ability of 2DES to dissect assembles in nanocrystal films, we have clearly identified experimental evidences of coherent coupling between exciton and phonon in CdSe/ZnS nanocrystals. In time domain, 2DES signals of excitonic transitions beat at a frequency resonant to a longitudinal optical phonon mode; in energy domain, phonon side bands are distinct at both Stokes and anti-Stokes sides. When temperature increases, phonon-induced exciton dephasing is observed with dramatic broadening of homogeneous linewidth. The results suggest exciton-phonon coupling is essential in elucidating the quantum dynamics of excitonic transitions in semiconductor nanocrystals.  相似文献   
4.
Advancing inverted (p-i-n) perovskite solar cells (PSCs) is critical for commercial applications given their compatibility with different bottom cells for tandem photovoltaics, low-temperature processability (≤100 °C), and promising operational stability. Although inverted PSCs have achieved an efficiency of over 25 % using doped or expensive organic hole transport materials (HTMs), their synthesis cost and stability still cannot meet the requirements for their commercialization. Recently, dopant-free and low-cost non-stoichiometric nickel oxide nanocrystals (NiOx NCs) have been extensively studied as a low-cost and effective HTM in perovskite optoelectronics. In this minireview, we summarize the synthesis and surface-functionalization methods of NiOx NCs. Then, the applications of NiOx NCs in other perovskite optoelectronics beyond photovoltaics are discussed. Finally, we provide a perspective for the future development of NiOx NCs for the commercialization of perovskite optoelectronics.  相似文献   
5.
One-dimensional fiber architecture serves as an excellent catalyst support. The orderly arrangement of active materials on such a fiber substrate can enhance catalytic performance by exposing more active sites and facilitating mass diffusion; however, this remains a challenge. We developed an interfacial assembly strategy for the orderly distribution of metal nanocrystals on different fiber substrates to optimize their electrocatalytic performance. Using electrochemical nitrate reduction reaction (NO3RR) as a representative reaction, the iron-based nanofibers (Fe/NFs) assembly structure achieved an excellent nitrate removal capacity of 2317 mg N/g Fe and N2 selectivity up to 97.2 %. This strategy could promote the rational design and synthesis of fiber-based electrocatalysts.  相似文献   
6.
The development of fluorescent nanocrystals based on organic small molecules is of great importance in bioimaging due to the merits of easy modification,high brightness and excellent photostability,however suffering from the emission-detrimental aggregation-caused quenching(ACQ)effect.Herein,we successfully designed and synthesized an AIE-active di(N,N-dimethylaniline)-dibenzofulvene(named as NFTPE),which exhibits the crystallization-induced emission enhancement(CIEE)effect.Interestingly,two types of yellow-and orange-emissive crystals for NFTPE were obtained,exhibiting aggregation microenvironment-dependent emission tuning in the solid state.Single-crystal analysis and density functional theory(DFT)calculations reveal that different aggregation microenvironments result in the distinct molecular conformation for various emission.Excitingly,the crystallization of NFTPE in an aqueous solution under the assistance of amphiphilic PEG polymer matrices could be monitored in situ by the fluorescence changes,facilitating the preparation of NFTPE nanocrystals(NFTPE-NCs)by adjusting the aggregation microenvironment.The obtained NFTPE-NCs exhibit the superior performance in cell imaging in respect to high brightness,photostability,and biocompatibility,thus demonstrating the potential in bioimaging applications.  相似文献   
7.
We investigate the energy structure of colloidal CdS nanocrystals by measuring the UV–vis absorption spectra. Nanocrystals were synthesized by sol–gel method in a gelatin matrix in the size range from 2.5 to 3.9 (±0.2) nm. In order to interpret the UV–vis absorption spectra we calculate the energy spectrum of electron quasi-stationary states using the model of open nanocrystal as well as the hole stationary spectrum in a two-band approach. It is shown that the main contribution to the absorption spectrum is made by interband transitions 1S3/2→1Se and 1P3/2→1Pe, and its shape is determined by the size distribution of nanoparticles. For this system the estimated values of the effective masses of the heavy hole and light hole are 1.44m0 and 0.28m0, respectively.  相似文献   
8.
The controlled synthesis of Pd icosahedra in tetraethylene glycol with H2PdCl4 as a precursor and polyvinylpyrrolidone (PVP) as a stabilizer was demonstrated. Tetraethylene glycol served as both solvent and reducing agent, and uniform Pd icosahedra with a mean size of 45 ± 5 nm were successfully synthesized with a high yield of over 90% in oil-bath at 160 °C for 2.5 h. A certain affinity for the metal particles, a higher viscosity and a milder reducing power of tetraethylene glycol would be responsible for the formation of uniform and stable Pd icosahedra with a high yield. The optimum KOH/Pd(II) ratio, PVP/Pd(II) ratio, temperature, and heating time for the reaction system was 1.4/1, 1/1, 160 °C, and 2.5 h, respectively.  相似文献   
9.
Lead acetate, which is highly soluble in dimethylformamide, was used to synthesize mixed halide perovskite CH3NH3PbBr3-xClx (MA = CH3NH3, 0 ≤ x ≤ 3) nanocrystals (NCs). This method provides an approach to address the low solubility of lead halides, especially lead chloride. Different Br/Cl ratios in MAPbBr3-xClx lead to various optical properties. The photoluminescence emission peak can be tuned from 399 to 527 nm. Their full-widths at half-maxima (FWHM) are about 20 nm. MAPbBr3-xClx NCs have an average diameter of ~(11 ± 3) nm and have uniform dispersion in toluene. The MAPbBr3 NCs have a long average recombination lifetime (τave = 97.4 ns) and a photoluminescence quantum yield (PLQY) of up to 73%.  相似文献   
10.
CoxZnyFe3−xyO4 ferrite (x=1 to 0; y=0 to1) nanocrystals have been synthesized by reverse microemulsion method. The nanocrystals are then comprehensively characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Field emission transmission electron microscopy (FETEM), and magnetic properties were measured by using Vibrating sample magnetometer. X-ray analysis showed that all the crystals were cubic spinel. The lattice constant increased with the increase in Zn substitution. FETEM reveals that particle size varies in the range from 3 to 6 nm. As the concentration of Zn increases the magnetic behavior varies from ferromagnetic at y=0 and 0.2 to superparamagnetic to paramagnetic at y=1. The Curie temperature decreases with increasing concentration of Zn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号