首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   30篇
  国内免费   68篇
化学   329篇
力学   62篇
数学   9篇
物理学   213篇
  2023年   3篇
  2022年   8篇
  2021年   13篇
  2020年   15篇
  2019年   19篇
  2018年   10篇
  2017年   14篇
  2016年   29篇
  2015年   30篇
  2014年   29篇
  2013年   33篇
  2012年   30篇
  2011年   39篇
  2010年   37篇
  2009年   31篇
  2008年   24篇
  2007年   25篇
  2006年   21篇
  2005年   31篇
  2004年   29篇
  2003年   16篇
  2002年   20篇
  2001年   19篇
  2000年   10篇
  1999年   11篇
  1998年   10篇
  1997年   2篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1988年   7篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1979年   1篇
排序方式: 共有613条查询结果,搜索用时 15 毫秒
1.
微区X射线荧光(Micro-XRF)分析技术是通过微小的X射线光束照射样品,对样品进行原位成分观测的无损分析手段之一,具有灵敏度高、速度快和准确性高的特点。采用微区X射线荧光光谱仪(M6 JETSTREAM)对安徽铜陵冬瓜山铜矿床四段岩心样品进行面扫描,分析不同矿层共17种元素区域分布特征、空间分布规律及组合关系等,结果表明:(1)Cu和Fe两种成矿元素高值空间分布区域基本不重叠,S与Fe分布范围高度重叠,关系密切,微量元素Ni,Bi,Pb,Zn,Si,Na与Cu密切相关,而Ti,Al,K与Fe具有弱相关性;(2)垂向上,Fe元素含量随深度增加逐步增大,而Cu元素含量呈降低趋势,其他元素也随深度呈下降趋势;(3)元素分布受石炭纪中期海底喷流沉积成矿作用和岩浆热液成矿作用叠加改造作用明显;(4)该钻孔矿石矿物以磁黄铁矿、黄铜矿和黄铁矿为主,垂向上组合规律明显,脉石矿物以石英、石榴子石和透辉石为主。该技术通过分析元素空间分布规律、相关性以及矿物组合和分配关系等可对元素富集和运移以及对矿床的成矿机制、成因模式等地质环境和地质过程提供新认识和新证据。结合矿床地球化学特征的分布模式,微量元素可作为寻找主矿种的指示元素,为深部找矿提供依据。此外,该技术能作为预分析技术快速筛选出感兴趣的信息和位置,为后期各种更高精度的微区分析提供不同尺度、不同层次的元素分布信息。  相似文献   
2.
In this paper, the bending fatigue tests of honeycomb sandwich panels are carried out by using an improved three-point bending test fixture, and the S-N curves at different stress ratios are obtained. Through the records of fatigue damage in the experiment, the failure mode of the honeycomb sandwich panels and the source of fatigue damage are determined. At the same time, through the calculation of the shear stress distribution on the honeycomb wall, the reasons for the difference in the failure morphology of the L-direction and W-direction sandwich panels are clarified. Besides, a life prediction method is proposed and its effectiveness in predicting the fatigue life of sandwich panels has been verified.  相似文献   
3.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   
4.
Development and application of hybrid membranes containing multi-component materials are increasing day by day in the fields of environmental protection and water treatment. In this research, the efficiency of titania nanowire (TiO2 NW)-based self-supported hybrid membranes was investigated in the removal of Escherichia coli (E. coli) bacteria and MS2 bacteriophages from contaminated water mimicking the microorganism suspension. Furthermore, toxicology tests on the as-prepared membranes were also performed. TiO2 NWs were coated with iron(III) oxide (Fe2O3) and copper(II) oxide (CuO) nanoparticles, respectively, and cellulose was used as reinforcement material. It was found that, the functionalisation strongly affected the MS2 removal ability of as-prepared membranes, which can be due to the electrostatic interactions between the surface of hybrid membrane and the bacteriophages. The most efficient removal (greater than or equal to 99.99%) was obtained with the TiO2 NW-CuO-cellulose membrane at pH 7.0. The fabricated hybrid membranes were characterized by micro computed tomography (μCT), Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), contact angle measurement and inductively coupled optical emission spectrometry (ICP-OES) techniques. This study shows a simple route of the usage of novel and effective inorganic nanowire-based hybrid membranes for bacteria and virus removal, providing new pathways in the field of water filtration technologies.  相似文献   
5.
We describe a highly sensitive micro‐solid‐phase extraction method for the pre‐concentration of six phthalate esters utilizing a TiO2 nanotube array coupled to high‐performance liquid chromatography with a variable‐wavelength ultraviolet visible detector. The selected phthalate esters included dimethyl phthalate, diethyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2‐ethylhexyl)phthalate and dioctyl phthalate. The factors that would affect the enrichment, such as desorption solvent, sample pH, salting‐out effect, extraction time and desorption time, were optimized. Under the optimum conditions, the linear range of the proposed method was 0.3–200 μg/L. The limits of detection were 0.04–0.2 μg/L (S/N = 3). The proposed method was successfully applied to the determination of six phthalate esters in water samples and satisfied spiked recoveries were achieved. These results indicated that the proposed method was appropriate for the determination of trace phthalate esters in environmental water samples.  相似文献   
6.
A series of rheological experiments was performed for a polypropylene (PP) melt to explore its elongation behavior through a capillary die. Using an advanced twin-bore capillary rheometer with dies measuring 1.0, 0.5, and 0.25 mm in diameter, the experiments were performed at 210, 220, and 230 °C. The results indicated that the temperature of the PP melt had a significant effect on its extensional viscosity. The different decreases in the extensional viscosity values in the tested dies revealed the geometry dependence of the extensional viscosity. In the case of PP in the 0.25 mm die at 210 °C, the extensional viscosity values under different extensional strain rates were much higher than those in the other dies. Only in the 1.0 mm die did the relationship between the extensional viscosity of PP and its temperature obey the Arrhenius equation due to the larger die size which related to a slight size effect on its elongation behavior. The calculated deviations of the extensional viscosity in the tested dies demonstrated that the increasing pressure applied to the PP melt in the micro channel was related to the geometry dependence of the elongation behavior of the PP melt. The change in the extensional viscosity eventually relied on the interaction of the die geometry, the temperature, and the extensional stress of the PP melt.  相似文献   
7.
This investigation examines non-Newtonian flow mechanisms and heat transfer characteristics for a micro spinneret. The working fluid, Polyethylene terephthalate (PET), is the raw material of micro fiber, and a large-scale experimental test model was designed to visualize the complex viscous flow system in the micro spinneret. To visualize the complex convective flow system, an experimental test model was constructed, using glycerin instead of PET. The related parameters of PET were compared with those of glycerin. The power law correlates the shear strain with PET viscosity at various temperatures. The pressure distribution along the flow direction was measured and the flow pattern was visualized using polyethylene (PE) powder of 20–40 m. Similar configurations were calculated for micro spinneret physical parameters to determine the thermal flow characteristics. The Reynolds number in the test model is not less than 10–2. In the non-Newtonian PET working fluid of practical micro spinneret, flows with Re = 104 to 10–2 are in the same low Reynolds number flow regime. Therefore, the working fluid is expected to have the same flow characteristic. A numerical solution covering the range of approximately Re = 10–4 at PET confirms that the flow characteristics of glycerin are constant for Re = 1.228 × 10–2. The Peclet number in the test model can be adjusted to a value similar to that in the micro spinneret. The flow visualization was compared with that of the numerical solution, and the friction factor and Nusselt number in the micro spinneret were analyzed. Finally, numerical results and friction factor with various exit angles of micro spinneret in a triangular zone flow system were also summarized.  相似文献   
8.
In this study, two multi-scale analyses codes are newly developed by combining a homogenization algorithm and an elastic/crystalline viscoplastic finite element (FE) method (Nakamachi, E., 1988. A finite element simulation of the sheet metal forming process. Int. J. Numer. Meth. Eng. 25, 283–292; Nakamachi, E., Dong, X., 1996. Elastic/crystalline viscoplastic finite element analysis of dynamic deformation of sheet metal. Int. J. Computer-Aided Eng. Software 13, 308–326; Nakamachi, E., Dong, X., 1997. Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis. J. Appl. Mech. Trans. ASME(E) 64, 519–524; Nakamachi, E., 1998. Elastic/crystalline viscoplastic finite element modeling based on hardening–softening evaluation equation. In: Proc. of the 6th NUMIFORM, pp. 315–321; Nakamachi, E., Hiraiwa, K., Morimoto, H., Harimoto, M., 2000a. Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification. Int. J. Plasticity 16, 1419–1441; Nakamachi, E., Xie, C.L., Harimoto, M., 2000b. Drawability assessment of BCC steel sheet by using elastic/crystalline viscoplastic finite element analyses. Int. J. Mech. Sci. 43, 631–652); (1) a “semi-implicit” finite element (FE) code and (2) a “dynamic explicit” FE code. These were applied to predict the plastic strain induced yield loci and the formability of sheet metal in the macro scale, and simultaneously the crystal texture and hardening evolutions in the micro scale. The isotropic and kinematical hardening laws are employed in the crystalline plasticity constitutive equation. For the multi-scale structure, two-scales are considered. One is a microscopic polycrystal structure and the other a macroscopic elastic plastic continuum. We measure crystal morphologies by using the SEM-EBSD apparatus with a unit of about 3.8 μm voxel, and define a three dimensional (3D) representative volume element (RVE) for the micro polycrystal structure, which satisfy the periodicity condition of crystal orientation distribution. A “micro” finite element modeling technique is newly established to minimize the total number of finite elements in the micro scale. Next, the “semi-implicit” crystallographic homogenization FE code, which employs the SEM-EBSD measured RVE, is applied to the 99.9% pure-iron uni-axial tensile problem to predict the texture evolution and the subsequent yield loci in the various strain paths. These “semi implicit” results reveal that the plastic strain induced anisotropy in the micro and macro levels can be predicted by our FE analyses. The kinematical hardening law leads a distinct plastic strain induced anisotropy. Our “dynamic-explicit” FE code is applied to simulate the limit dome height (LDH) test problem of the mild steel DQSK, the high strength steel HSLA and the aluminum alloy AL6022 sheet metals, which were adopted as the NUMISHEET2005 Benchmark sheet metals (Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B., 2005. NUMISHEET2005. In: Proc. of 6th Int. Conf. Numerical Simulation of 3D Sheet Metal Forming Processes, PART A and B(Benchmark), pp. 409–451) to estimate formability. The “dynamic explicit” results reveal that the initial crystal orientation distribution has a large affects to a plastic strain induced texture and anisotropic hardening evolutions and sheet formability.  相似文献   
9.
《Comptes Rendus Physique》2019,20(6):521-528
Several muon telescopes have been developed in the last years at CEA-Saclay. Benefitting from 15 years of R&D on Micro-Pattern Gaseous Detectors (MPGDs) and from several recent innovations, these telescopes yield unprecedented resolution for real-time instruments, and allow for high-definition muography imaging. As a first application, three of them were deployed around Khufu's Pyramid from 2015 to 2017, showing very good performance and stability in harsh conditions. They also provided the first-ever detection of internal structures of a pyramid from the outside, and participated in the discovery of a large void above the Grand Gallery.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号