首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-structured titanium nitride (TiN) thin film coating is deposited by reactive sputtering in cylindrical magnetron device in argon and nitrogen gas mixtures at low temperature. This method of deposition using DC cylindrical magnetron configuration provides high uniform yield of film coating over large substrate area of different shapes desirous for various technological applications. The influence of nitrogen gas on the properties of TiN thin film as suitable surface protective coating on bell-metal has been studied. Structural morphological study of the deposited thin film carried out by employing X-ray diffraction exhibits a strong (2 0 0) lattice texture corresponding to TiN in single phase. The surface morphology of the film coating is studied using scanning electron microscope and atomic force microscope techniques. The optimized condition for the deposition of good quality TiN film coating is found to be at Ar:N2 gas partial pressure ratio of 1:1. This coating of TiN serves a dual purpose of providing an anti-corrosive and hard protective layer over the bell-metal surface which is used for various commercial applications. The TiN film's radiant golden colour at proper deposition condition makes it a very suitable candidate for decorative applications.  相似文献   

2.
A thin composite separator with polyethylene terephthalate nonwoven membrane as the structural support and polyvinylidene fluoride-hexafluoropropylene as the coating layer for lithium-ion batteries was prepared by a simple dip-coating process. The effect of different drying temperatures on the performance of the composite separator was investigated. The results indicate that 80 °C is the optimal drying temperature, preventing leakage current problems and providing a well-developed porous structure. The drying of the composite separator at 80 °C provides a superior thermal stability, better wettability with electrolyte, higher electrolyte uptake, and ionic conductivity compared to commercially available polypropylene (PP) separator. Furthermore, the electrochemical performance consisting of electrochemical stability, self-discharge, cycle performance, rate performance of the composite separator, and PP were determined. The drying of the composite separator at 80 °C shows almost the same oxidation stability and self-discharge performance, but a better cycling and rate performance than the PP separator.  相似文献   

3.
A set of nanocomposite thin films consisting of Au nanoclusters dispersed in a TiO2 dielectric matrix was deposited by reactive magnetron sputtering, and subjected to thermal annealing in vacuum, at temperatures ranging from 200 to 800 °C. The obtained results show that the structure and the size of Au clusters, together with the matrix crystallinity, changed as a result of the annealing, and were shown to be able to change the optical properties of the films and keeping good mechanical properties, opening thus a wide number of possible applications. The crystallization of the gold nanoclusters induced by the annealing was followed by a systematic change in the overall coating behaviour, namely the appearance of surface plasmon resonance (SPR) behaviour. This effect enables to tailor the thin films reflectivity, absorbance and colour coordinates, contributing to the importance of this thin film system. The different attained optical characteristics (reflectance values ranging from interference to metallic-like behaviours and colour varying for interference rainbow-like to several tones of red-brownish), associated with a reasonable mechanical resistance of the coatings (good adhesion to different substrates and hardness values ranging from 5 to 7.5 GPa), induce the possibility to use this film system in a wide range of decorative applications.  相似文献   

4.
The molecular layering at liquid-solid interface in a nanofluid is investigated by equilibrium molecular dynamics simulation. By tracking the positions of the nanoparticle and the liquid atoms around the spherical nanoparticle, it was found that an absorbed slip layer of liquid is formed at the interface between the nanoparticle and liquid; this thin layer will move with the Brownian motion of the nanoparticle. Through the analysis of the density distribution of the liquid near the nanoparticle it is found that the thickness of the layering is about 0.5 nm under the parameters used in the Letter.  相似文献   

5.
Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH4). The coating was performed by sequential reaction of SiH4 saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.  相似文献   

6.
S. Bellucci  B.N. Tiwari 《Physica A》2011,390(11):2074-2086
Under the fluctuation of the electric charge and atomic mass, this paper considers the theory of the thin film depletion layer formation of an ensemble of finitely excited, non-empty d/f-orbital heavy materials, from the thermodynamic geometric perspective. At each state of the local adiabatic evolutions, we examine the nature of the thermodynamic parameters, viz., electric charge and mass, changing at each respective embedding. The definition of the intrinsic Riemannian geometry and differential topology offers the properties of (i) local heat capacities, (ii) global stability criterion and (iv) global correlation length. Under the Gaussian fluctuations, such an intrinsic geometric consideration is anticipated to be useful in the statistical coating of the thin film layer of a desired quality-fine high cost material on a low cost durable coatant. From the perspective of everyday applications, thermodynamic geometry is thus intrinsically self-consistent with the theory of local and global economic optimizations. Following the above procedure, the quality of the thin layer depletion could self-consistently be examined to produce quality products economically.  相似文献   

7.
A thin film evaporation model based on the augmented Young–Laplace equation and kinetic theories was developed to describe the nanofluid effects on the extended evaporating meniscus in a microchannel. The nanofluid effects include the structural disjoining pressure, a thin porous coating layer at the surface formed by the nanoparticle deposition and the thermophysical property variations compared with the base fluid. The results show that the nanofluid thermal conductivity enhancement mainly due to the Brownian motion tends to greatly increase the liquid film thickness and the thin film heat transfer. The structural disjoining pressure effect tends to enhance the nanofluid spreading capability and the thin film evaporation. The nanoparticle-deposited porous coating layer improves the surface wettability while significantly reducing the thin film evaporation with increasing layer thickness due to the thermal resistance across this layer. The nanofluid thermal conductivity enhancement together with the structural disjoining pressure effect can not counteract the thermal resistance effects of the porous coating layer when the coating layer thickness is sufficiently large.  相似文献   

8.
张福甲  李宝军 《发光学报》1993,14(3):247-252
本文用AES和SIMS分析讨论了p-GaP与三层金属膜Pd/Zn/Pd形成良好欧姆接触层的性质.  相似文献   

9.
The spinel LiMn2O4 is a promising candidate for future battery applications. If used as a positive electrode in a battery, the charging capacity of such a battery element is limited by the formation of a solid electrolyte interphase like layer between the electrolyte and the spinel. To study the electrolyte-electrode interaction during electrochemical cycling, spinel thin films are deposited as model electrodes on glassy carbon substrates by pulsed laser ablation. The obtained polycrystalline oxide thin films show a well defined surface morphology and are electrochemical active. Adhesion of these thin films on glassy carbon is in general poor, but can be improved considerably by a surface pretreatment or adding a thin metallic coating to the substrate prior deposition. The best adhesion is obtained for films deposited on argon plasma pretreated as well as Pt coated glassy carbon substrates. During the electrochemical characterization of Li1.06Mn2O3.8 thin film electrodes, no additional reactions of the substrate are observed independent of the used electrolyte. The best cycle stability is achieved for films on Pt coated glassy carbon substrates.  相似文献   

10.
利用稳态和瞬态光谱技术研究了人工组装锌卟啉(ZnP)-苯桥(BB)-铁卟啉(Fe(Cl)P)超分子体系中给体三线态到受体的能量传递及其机理。结果表明体系中存在着由给体ZnP三线态向受体Fe(Cl)P的超快能量传递过程,在室温和低温下通过激发给体ZnP,其单线态的激发能经由系间窜越过程使其三线态布居,在受体Fe(Cl)P存在的情况下,位于给体三线态的激发能经由桥联分子B传递到受体Fe(Cl)P,室温下传递速率为7.2×105s-1。由于体系中给体到受体之间的空间距离约为2.5nm,由给体-受体直接耦合引起的传递机理可以排除,由桥联分子媒介的超交换机理是该能量传递过程的主要物理机理。  相似文献   

11.
才玺坤  张立超  梅林  时光 《中国光学》2014,7(5):808-815
研究了钼舟热蒸发工艺和离子束溅射方法制备的单层LaF3薄膜的特性。首先,采用分光光度计测量了LaF3薄膜的透射率和反射率光谱,使用不同模型拟合得出薄膜的折射率和消光系数。然后,采用应力仪测量了加热和降温过程中LaF3薄膜的应力-温度曲线。最后,采用X射线衍射仪测试了薄膜的晶体结构。实验结果表明,热蒸发制备的LaF3(RH LaF3)存在折射率的不均匀性,在193 nm,其折射率和消光系数分别为1.687和5×10-4,而离子束溅射制备的LaF3(IBS LaF3)折射率和消光系数分别为1.714和9×10-4。两种薄膜表现出相反的应力状态,RH LaF3薄膜具有张应力,而IBS LaF3具有压应力,退火之后其压应力减小。热蒸发制备的MgF2/LaF3减反膜在193 nm透过率为99.4%,反射率为0.04%,离子束溅射制备的AlF3/LaF3减反膜透过率为99.2%,反射率为0.1%。  相似文献   

12.
V. M. Korovin 《Technical Physics》2013,58(12):1721-1729
A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.  相似文献   

13.
The problem of existence and stability of soliton-like structures in a system consisting of a thin layer with resonance nonlinearity, a feedback mirror, and a photonic crystal located between them is studied. It is shown that, depending on the parameters of the photonic crystal, its presence can lead both to a change in the background on which localized structures are excited and to an increase in the interval of test pulse amplitudes necessary for the excitation of these structures.  相似文献   

14.
The reactivity of the relatively inert surfaces of iron-oxide magnetic nanoparticles can be significantly improved by coating the surfaces with silica. Unfortunately, however, this nonmagnetic silica layer tends to dilute the magnetic properties of the nanoparticles. Therefore, the silica layer should be as continuous, homogeneous, and as thin as possible.In this investigation we coated superparamagnetic maghemite nanoparticles by hydrolysis and the polycondensation of tetraethyl orthosilicate (TEOS), with the ethanol solution of TEOS being added to a stable suspension of citric acid-coated nanoparticles. The influences of the various parameters of the procedure on the quality of the coatings were systematically evaluated. The quality of the silica layer was characterized using electron microscopy and by performing leaching of the nanoparticles in HCl, while the surface reactivity was tested by grafting (3-aminopropyl) triethoxysilane (APS) onto the nanoparticles. We observed that the surface concentration of the grafted APS strongly increased when the nanoparticles were coated with a silica layer. The choice of experimental conditions for the coating procedure that favors the heterogeneous nucleation of silica on the surfaces of the nanoparticles enabled the preparation of very thin silica layers, less than 2 nm thick. By decreasing the amount of added TEOS to correspond to a monolayer of -Si-OH at the nanoparticles' surfaces, their surface reactivity could be very much improved, and with a reduction in their magnetization of only ∼10%.  相似文献   

15.
S. Bao 《Applied Surface Science》2007,253(14):6268-6272
Although Pd-capped Mg-Ni alloy switchable mirror thin films have potential applications in smart windows and optical switches, they degrade quickly and cannot be switched after about 150 cycles. This must be improved for practical use. In this study, we tested several polymer coatings on the surface of Pd/Mg4Ni switchable mirror thin films as a protective membrane and evaluated the optical switching property and durability. The polymer membrane is able to suppress the oxidization of Mg because it has an excellent gas separation characteristic. Polymer coating extended the switching durability of samples to about 1000 cycles. In addition, the transmittance of the thin film in the transparent state is improved by the coating.  相似文献   

16.
The algorithm for calculation of dynamic compliance of multilayer coatings was developed. The compliance modulus and phase lag of coating surface motion vs. the current pressure depend on viscoelastic properties of materials, ratio of wavelength to layer thickness λ/H, and ratio of wave velocity to propagation velocity of shear vibrations in the base layer V / C t,2 0 Dynamic compliance of the two-layer coating consisting of a thick base layer and thin durable outer layer was calculated. The elasticity modulus of the outer layer ranged up to eight values of elastic modulus of the inner layer; the density of the outer layer either remained equal to the density of the inner layer or increased proportionally to the elastic modulus. Depending on V / C t,2 0 two scenarios of compliant coating interaction with the turbulent flow were distinguished: resonant and broadband ones. It is shown that the vibration properties of two-layer coatings can be significantly better than the properties of the monolayer coatings. This makes it possible either to increase the coating strength or to work efficiently at lower velocities.  相似文献   

17.
In this paper the reflection and diffraction properties of nonlinear thin dielectric coatings are investigated. A quite simple geometry consisting of two semi-infinite homogenous linear spaces separated by a non-linear coating is considered. An incident plane wave propagating along the z direction towards the nonlinear thin coating is taken. The nonlinear thin coating is divided into elementary sectors, within each one of which one propagating and one reflected wave exists. The boundary conditions are then applied in order to develop an efficient numerical alogirthm to study the properties of the nonlinear thin coating.  相似文献   

18.
In the present study, a novel ionic polymer actuator employing a graphene nanocomposite (GN) as its electrodes was fabricated. By a conventional solvent mixing of a graphene nanopowder and polystyrene, a GN solution was prepared. The solution was then utilized in a dip coating process of an ionic polymer membrane, forming a thin liquid GN layer on the surfaces of the ionic polymer membrane. After removing the solvent from the coated film, the solidified conducting GN layer could be obtained, which was used as the electrodes in the ionic polymer actuator. An electrical property of the GN layer formed by the present method was characterized, confirming the possibility of the present GN in the actuator applications. Simple and reverse bending motions of the fabricated actuator were also investigated, verifying the usefulness of both the GN layer and the present simple fabrication method.  相似文献   

19.
An ultrasonic method proposed by us for determination of the complete set of acoustical and geometrical properties of a thin isotropic layer between semispaces (J. Acoust. Soc. Am. 102 (1997) 3467) is extended to determination of the properties of a coating on a thin plate. The method allows simultaneous determination of the coating thickness, density, elastic moduli and attenuation (longitudinal and shear) from normal and oblique incidence reflection (transmission) frequency spectra. Reflection (transmission) from the coated plate is represented as a function of six nondimensional parameters of the coating which are determined from two experimentally measured spectra: one at normal and one at oblique incidence. The introduction of the set of nondimensional parameters allows one to transform the reconstruction process from one search in a six-dimensional space to two searches in three-dimensional spaces (one search for normal incidence and one for oblique). Thickness, density, and longitudinal and shear elastic moduli of the coating are calculated from the nondimensional parameters determined. The sensitivity of the method to individual properties and its stability against experimental noise are studied and the inversion algorithm is accordingly optimized. An example of the method and experimental measurement for comparison is given for a polypropylene coating on a steel foil.  相似文献   

20.
G. Engels  R. E. Peck  Y. Kim 《实验传热》2013,26(3):181-198
A quasi-steady technique to simultaneously measure the local heat transfer coefficient and cooling effectiveness on surfaces involving film cooling situations is investigated. The method employs a composite slab consisting of a very thin laminate layer of low-thermal-conductivity material superposed upon a highly conductive metal substrate. The resulting heat transfer in the thin laminate is described by one-dimensional conduction. A very thin coating of thermochromic liquid crystals sprayed onto the surface of the laminate is used in conjunction with a computer image processing procedure to provide local surface temperature data. This information, combined with the substrate and mainstream gas temperatures, provides highly detailed (90 video pixels/cm2) local convection heat transfer distributions. The method is used to conduct flat-plate film cooling experiments consisting of a single row of discrete holes inclined at 35 to the mainstream flow. The local surface temperature is influenced by the combination of two interacting fluid streams at different temperatures. A numerical analysis was performed to assess the assumptions underlying the data reduction procedure. The experimental uncertainty of 7% in the heat transfer coefficient is comparable to prior studies. Furthermore, the uncertainty of 5% in the film cooling effectiveness, coupled with the negligible lateral conduction errors, indicates the present technique offers a unique capability for accurate measurement of the local film cooling effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号