首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   4篇
化学   38篇
  2020年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2010年   7篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   4篇
  2004年   1篇
  2001年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
1.
Ramosetron is an enantiopure active pharmaceutical ingredient marketed in Japan since 1996 and later in a few Southeast Asian countries predominantly as an antiemetic for patients receiving chemotherapy. In this study, a simple and rapid high‐performance liquid chromoatography method for the separation of ramosetron and its related enantiomeric impurity by using hydrophilic interaction liquid chromatography mode is presented. Chiral resolution was performed on an analytical column (100 mm × 4.6 mm id) packed with 3 μm particles of cellulose‐based Chiralpak IC‐3 chiral stationary phase. Using a mobile phase containing acetonitrile–water–diethylamine (100:10:0.1, v/v/v) and setting the column temperature at 35°C, the resolution value was 7.35. At a flow rate of 1 mL/min, the enantioseparation was completed within 5 min. The proposed method was partially validated and it has proven to be sensitive with limit of detection and limit of quantitation of the (S)‐enantiomer impurity of 44.5 and 133.6 ng/mL.  相似文献   
2.
建立了卡维地洛对映体的高效液相色谱分析方法。使用Chiralpak AD-H手性色谱柱,考察了流动相中极性调节剂的种类和体积分数、流动相中二乙胺的体积分数、柱温以及流速对卡维地洛对映体拆分的影响。确定了最佳拆分条件:流动相为正己烷-异丙醇-二乙胺(体积比70∶30∶0.05);流速1.0 mL/min;检测波长243 nm;柱温30℃。卡维地洛与固定相相互作用的焓变差值Δ(ΔH0)和熵变差值Δ(ΔS0)分别为-505.6 J/mol和-1.055 J/(mol.K)。研究手性合成了(S)-卡维地洛,对映体过量值(e.e.)达99.0%以上。在优化实验条件下,通过考察峰面积的显著差异,得到卡维地洛对映体的出峰顺序为:先S体,后R体。所建立的方法简单快捷、重复性好,可用于卡维地洛的质量研究和控制。  相似文献   
3.
The screening conditions of an existing column and mobile phase selection strategy for chiral compounds in normal‐phase high performance liquid chromatography (NP‐HPLC) were tested for their applicability on Chiralpak IC, which is a chiral stationary phase (CSP) made by immobilising cellulosic tris (3,5‐dichlorophenyl‐carbamate) on silica gel. In this study, the applicability of the optimization steps of the existing separation strategy was examined using 36 compounds representing the three possible resolution situations that occur after screening. The cumulative number of separated compounds is 27 (75.0 %), and the cumulative number of baseline separated compounds is 19 (52.8 %).  相似文献   
4.
Polysaccharide-based chiral stationary phases (CSPs) are efficient for enantioseparation of many chiral compounds. Immobilized polysaccharide CSP, as used in the Chiralpak IA column, is a new configuration that was recently introduced for application in chiral separation. As shown in several previous studies, the characteristics of Chiralpak IA columns cannot be simply extrapolated from the coated version. In this study, hold-up volume of a Chiralpak IA column was evaluated by static and dynamic methods. The static pyconometry method gave similar hold-up volumes either as an average value from a range of solvents or a direct measurement from the carbon tetrachloride-isopropanol (IPA) solvent pair. The dynamic method with 1,3,5-tri-tert-butylbenzene (TTBB) was influenced by the ratio of n-hexane and 2-propanol in the mobile phase but not by the dissolving solvent of TTBB. The two methods resulted in the same hold-up volume of ∼3.0 mL. TTBB showed weaker retention on the IA column after correction of isobaric thermal expansion of the mobile phase. During temperature variations in the range of 15–50 °C, the hold-up volume of TTBB was highly reproducible. Results of this study improve our understanding of the chromatographic features of the immobilized polysaccharide IA column.  相似文献   
5.
用手性固定相法拆分泮托拉唑钠对映体,并建立了检测泮托拉唑钠对映体光学纯度的HPLC方法.色谱柱为chiRALPAK AD-H柱(250×4.6 mm,5 μm),流动相为V(正已烷):V(异丙醇)=40:60,流速为0.5 mL/min,检测波长为288 nm.该法可用于左旋泮托拉唑钠原料药和制剂的质量控制.  相似文献   
6.
The enantioseparation of trans-3-ethoxycarbonyl-4-(4′-fluorophenyl)-1-methyl piperidine-2,6-dione (3), which is one of the important racemic precursors of trans-(−)-paroxetine, has been investigated using supercritical fluid chromatography on a Daicel Chiralpak AD column. Supercritical CO2 modified with methanol, ethanol and 2-propanol were used as mobile phase. The influence of type and concentration of alcohol modifier on retention factor, enantioselectivity and resolution were studied. Among methanol, ethanol and 2-propanol, 2-propanol was proved to be the most favorable modifier, and 9.5% (v/v) of 2-propanol was the preferred concentration at which racemate 3 could be separated with resolution of 15.86 and retention factor of 6.323. The effects of pressure and temperature were investigated at 9.5% (v/v) of 2-propanol in the pressure range of 12–24 MPa and temperature range of 303.15–318.15 K. It was found that the lower pressure and temperature were favorable to the enantioseparation. Using van’t Hoff plot, the isoenantioselective temperature was calculated to be 410 K. The enantioseparation process was “enthalpically driven” under experimental conditions. Finally, the retention factors were satisfactorily correlated by a simplified lattice–fluid model with average absolute relative deviation (AARD%) of both enantiomers smaller than 1.76%.  相似文献   
7.
High-performance liquid chromatography (HPLC) enantioseparation of terazosin (TER) was accomplished on the immobilised-type Chiralpak IC chiral stationary phase (CSP) under both polar organic and reversed-phase modes. A simple analytical method was validated using a mixture of methanol–water–DEA 95:5:0.1 (v/v/v) as a mobile phase. Under reversed-phase conditions good linearities were obtained over the concentration range 8.76–26.28 μg mL−1 for both enantiomers. The limits of detection and quantification were 10 and 30 ng mL−1, respectively. The intra- and inter-day assay precision was less than 1.66% (RSD%). The optimised conditions also allowed to resolve chiral and achiral impurities from the enantiomers of TER. The proposed HPLC method supports pharmacological studies on the biological effects of the both forms of TER and analytical investigations of potential drug formulations based on a single enantiomer. At the semipreparative scale, 5.3 mg of racemic sample were resolved with elution times less than 12 min using a mobile phase consisting of methanol–DEA 100:0.1 (v/v) and both enantiomers were isolated with a purity of ≥99% enantiomeric excess (ee). The absolute configuration of TER enantiomers was assigned by comparison of the measured specific rotations with those reported in the literature.  相似文献   
8.
A study of the enantiomeric separation of omeprazole and several related benzimidazoles, using supercritical fluid chromatography (SFC), on the amylose based column Chiralpak AD is presented in this work. The effect of the organic modifier as well as temperature on the retention and enantioresolution was investigated. Alcohol-type modifiers provided the best results, allowing the enantiomeric separation of all the compounds studied with resolutions that were in most cases higher than 2, and analysis times lower than 10 minutes. An investigation of the temperature effect revealed that the isoelution temperature was below the working temperature range in only two cases, and hence it was better to work at the highest temperature permitted.  相似文献   
9.
The enantioselective resolution of a set of racemic acidic compounds such as non-steroidal anti-inflammatory drugs (NSAIDs) of the group arylpropionic acid derivatives is demonstrated. Thus, a set of lipases were screened and manipulated in either the esterification or hydrolysis mode for the enantioselective kinetic resolution of these racemates in non-standard organic solvents. The accurate determination of the enantiomeric excesses of both substrate and product during such reaction is demonstrated. This was based on the development of a direct and reliable enantioselective high performance liquid chromatography (HPLC) procedure for the simultaneous baseline separation of both substrate and product in one run without derivatization. This was achieved using the immobilized chiral stationary phase namely Chiralpak IB, a 3,5-dimethylphenylcarbamate derivative of cellulose (the immobilized version of Chiralcel OD) which proved to be versatile for the monitoring of the lipase-catalyzed kinetic resolution of racemates in non-standard organic solvents.  相似文献   
10.
The separation of racemic paroxol, a key precursor of trans‐(?)‐paroxetine, on Chiralpak AD‐H, an amylose‐based chiral stationary phase, by supercritical fluid chromatography was studied. Pulse experiments were investigated using supercritical carbon dioxide modified with methanol (MeOH), ethanol and 2‐propanol at 35°C and 15 MPa. Retention and separation factors were determined under analytical conditions for different mobile phase compositions. Among the modifiers used, MeOH was shown to be the best additive, and 5% v/v of MeOH was the preferable concentration at which selectivity of 1.14 and resolution of 3.0 was obtained. In order to evaluate the potential with respect to preparative separations, the adsorption isotherms of individual enantiomers of paroxol were estimated using the elution by characteristic point method. Isotherm parameters were determined from the overloaded elution profiles that were collected at pressure ranging from 15 to 24 MPa. The isotherms obtained were further validated by comparing experimentally recorded elution profiles with the predictions based on the equilibrium‐dispersive model. The results are important to the process design and optimization of preparative supercritical fluid chromatography application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号