首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   28篇
  国内免费   188篇
化学   318篇
晶体学   7篇
力学   6篇
综合类   12篇
物理学   56篇
  2024年   2篇
  2023年   3篇
  2022年   7篇
  2021年   7篇
  2020年   8篇
  2019年   8篇
  2017年   7篇
  2016年   5篇
  2015年   7篇
  2014年   31篇
  2013年   16篇
  2012年   13篇
  2011年   13篇
  2010年   19篇
  2009年   26篇
  2008年   18篇
  2007年   25篇
  2006年   26篇
  2005年   25篇
  2004年   18篇
  2003年   13篇
  2002年   10篇
  2001年   7篇
  2000年   10篇
  1999年   11篇
  1998年   6篇
  1997年   13篇
  1996年   11篇
  1995年   9篇
  1994年   8篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1989年   5篇
  1988年   2篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
1.
通过简单可控的滴涂成膜法和电聚合法,将Nafion-聚苋菜红-石墨烯纳米复合膜固定于玻碳电极表面,构建了一种新型NO生物医学传感界面。电化学表征表明,纳米复合膜对于NO的电化学氧化具有良好的催化效应。借助于电子扫描显微镜技术和电化学交流阻抗技术对纳米复合膜的电催化机理进行了探讨,并对传感器的性能进行了考察。结果表明,该传感器具有较宽的线性范围(1.0×10~(-7)~5.1×10~(-4) mol/L),检出限低至1.8×10~(-8) mol/L。方法具有重现性好、稳定性好、灵敏度高以及抗干扰能力强等优点。将该传感器应用于小鼠母瘤神经细胞释放NO的监测,取得了令人满意的结果。  相似文献   
2.
以静电纺丝聚丙烯腈(PAN)纳米纤维作为多孔支撑层,以亲水材料聚乙烯醇(PVA)和海藻酸钠(SA)为亲水表层材料,通过静电喷雾技术将亲水表层材料沉积在纳米纤维多孔基膜表面,然后将表层PVA-SA纳米串珠层通过水蒸气加湿辅助热压成膜处理在PAN基膜上软化压延形成完整的致密薄膜,最后经过戊二醛交联制备PVA-SA/PAN纳米纤维基复合滤膜.通过对加湿时间、热压温度、热压时间以及PVA-SA静电喷雾时间等成膜工艺条件和交联条件进行优化制备出结构完整的PVA-SA/PAN纳米纤维基复合滤膜.所制备的复合滤膜荷负电,它对阴离子染料具有较好的过滤效果:在0.6 MPa的操作压力下对100 mg/kg的固绿染料的渗透通量为57.1 L/(m~2h),截留率为96.8%.  相似文献   
3.
在河水与海水的交界处实现渗透能提取与捕获是解决未来能源危机的重要方式之一. 渗透能因为储量大, 容易获取以及绿色可持续的优势受到广泛关注. 反向电渗析技术是一种能够有效捕获渗透能的方法之一, 目前已经得到了深入的研究与发展. 离子交换膜是反向电渗析技术转换渗透能的关键组件, 其性能的优异程度决定能量转换效率的高低. 常见的膜材料主要是高分子聚合物及其改性化合物, 最近一些二维材料如石墨烯、 氧化石墨烯、 二硫化钼、 各种框架材料及其改性复合物因优异的选择性离子传输、 纳米级通道、 丰富的表面功能基团以及可修饰性成为捕获渗透能的重要膜材料. 本文综合评述了二维材料作为离子传输通道的类型以及相应的传输机理; 例举了二维材料及其复合物的设计方案和在渗透能转换方面的具体应用; 最后提出了目前二维材料在渗透能转换领域中面临的挑战以及未来的发展方向.  相似文献   
4.
5.
基于表面等离子体共振效应,设计一种锥形光纤探针折射率传感器。通过锥形结构理论模型与SPR共振模型,利用MATLAB与FDTD Solutions软件进行理论计算与模拟仿真,分析锥形光纤锥度比、传感区长度和银膜厚度对传感器发生共振时的共振深度的影响。通过对比所镀膜层的结构与厚度,从灵敏度与品质因素角度对传感器性能进行优化。结果表明随着锥形光纤锥度比增大,共振深度出现极值;传感区长度越长,共振深度越深;银膜在50 nm处传感器性能较优,银/二氧化钛复合膜结构的传感器灵敏度与品质因素高于单层膜结构传感器。  相似文献   
6.
采用自组装分子膜技术在烧结型NdFeB永磁体表面制备了三嗪硫醇三乙基硅烷(TES)自组装分子膜(TES-SAMs), 在TES-SAMs的基础上利用自主开发的有机镀膜技术制备了具有含氟官能团的三嗪硫醇(ATP)有机纳米复合薄膜(TES-ATP). 通过X射线光电子能谱仪(XPS)、傅里叶变换红外(FTIR)光谱仪、椭圆偏振光谱仪、原子力显微镜(AFM)和接触角测量仪对薄膜的表面状况进行评价, 使用UMT-2型摩擦磨损试验机研究TES-SAMs和TES-ATP的微摩擦学性能. 研究结果表明: TES-SAMs和TES-ATP的膜厚分别是5.08和29.78nm; 表面自由能从基体的73.13 mJ·m-2下降到TES-SAMs的63.69 mJ·m-2和TES-ATP复合膜的10.19 mJ·m-2, 且TES-ATP复合膜对蒸馏水的接触角为123.5°, 成功实现了NdFeB表面由亲水到疏水的转换.TES-SAMs和TES-ATP均能有效降低摩擦系数, TES-SAMs的摩擦系数为0.22, TES-ATP的摩擦系数为0.12, 而基体的摩擦系数为0.71; 同时, TES-ATP还表现出良好的抗磨性能. TES-ATP复合膜为微机电系统中的摩擦磨损问题的解决提供了一种新思路.  相似文献   
7.
邓璐遥  李少路  秦一文  胡云霞 《化学进展》2020,32(12):1895-1907
由活性层和支撑层组成的薄层复合(TFC)聚酰胺(PA)膜,是目前广泛应用于纳滤、反渗透、正渗透和压力延迟渗透过程中的高性能脱盐膜,具有水通量大和截盐率高等优异性能。然而,由于TFC-PA膜存在活性层疏水性强、支撑层孔径大等特点,致使TFC-PA膜在实际使用过程中极易受到膜污染,制约了TFC-PA膜的进一步推广和使用。本文讨论分析了TFC-PA膜的结构特点和表面性质,总结归纳了在不同膜过程中TFC-PA膜污染形成的原因及特点,详细论述了国内外抗污染TFC-PA膜的研究进展。本文重点介绍了活性层抗污染改性和支撑层抗污染改性方法,并对其抗污染机理以及存在的问题进行了阐述与分析,最后对抗污染TFC-PA膜的结构设计与表面改性策略进行了总结及展望。  相似文献   
8.
以静电纺丝技术制备的同轴聚甲基丙烯酸十八烷基酯(PSMA)/聚对苯二甲酸乙二酯(PET)纳米储能纤维为支撑层,经聚偏氟乙烯(PVDF)涂覆成膜和溶剂化处理,制备了一种低压高水通量的纳米储能纤维复合过滤膜(NFCM),其中以水或乙醇为凝固溶液的复合过滤膜分别记为NFCM@H2O或NFCM@EtOH.分析并讨论了不同溶剂处理方式对NFCM力学性能和表面形貌的影响,表征了膜的纯水通量和抗污性能,用扫描电子显微镜(SEM)观察了膜的横断面形貌.结果表明,PSMA/PET纳米储能纤维具有明显的吸放热行为,熔融温度和热焓值分别为36.5℃和10.7J/g,NFCM的熔融温度和热焓值分别为36℃和2.7J/g.NFCM的形貌结构、纯水通量和截留率与溶剂处理方式相关,NFCM@EtOH膜的水通量介于100~1400L/(m2·h)之间,而NFCM@H2O膜的水通量仅在40~220L/(m2·h)之间.NFCM的拉伸强度由初始0.925MPa(PVDF)提高到4.28MPa以上.NFCM中的相变材料对膜过滤性能有重要影响,并在过滤温度低于50℃时具有减缓作用.  相似文献   
9.
采用循环伏安法在铂电极表面形成聚间苯二胺-壳聚糖复合膜;以戊二醛为交联剂将葡萄糖氧化酶共价固定在复合膜上形成葡萄糖电化学生物传感器;运用扫描电镜考察复合膜的形貌特征;考察了壳聚糖用量和电位循环圈数对膜特性的影响;采用电流-时间法考察了该传感器对葡萄糖的电化学响应特性。结果表明,该传感器对葡萄糖有较快的响应速度(3.5s),在0.02m mol·L-1~1.27mmol·L-1浓度范围内响应电流与葡萄糖浓度成正比,检测极限为0.01m mol·L-1,样品测定的加标回收率为97.1%~102.5%。该传感器具有较好的选择性,对葡萄糖的测定具有较高的准确度与精密度。  相似文献   
10.
溶剂热-聚乙烯醇粘附法制备了钛网负载BixTiOy-TiO2复合膜电极。利用X射线衍射、紫外-可见漫反射、光致发光(PL)、扫描电子显微镜和能谱(EDS)等测试技术对合成的纳米材料和膜电极进行了表征。利用三电极系统对模拟压载水的灭菌效果进行实验研究。考察了外加电压、光源和膜电极的使用次数对光电催化灭菌效果的影响。UV-Vis实验表明,BixTiOy-TiO2复合材料比纯TiO2有好的可见光吸收;PL实验证明,复合材料比纯TiO2有更高光量子效率。对细菌浓度为106CFU/mL的模拟压载水的光电催化灭菌实验结果表明,外加电压为9 V,电极与溶液接触面积为140 cm2时,20 W紫外杀菌灯照射下反应2 min即可完全去除压载水中的细菌;聚乙烯醇粘附法制备的电极重复使用20次,灭菌效果不变。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号