首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   9篇
  国内免费   195篇
化学   281篇
力学   2篇
综合类   3篇
物理学   18篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   13篇
  2012年   1篇
  2011年   6篇
  2010年   10篇
  2009年   7篇
  2008年   5篇
  2007年   7篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   11篇
  2001年   15篇
  2000年   11篇
  1999年   12篇
  1998年   10篇
  1997年   7篇
  1996年   8篇
  1995年   12篇
  1994年   13篇
  1993年   10篇
  1992年   12篇
  1991年   10篇
  1990年   16篇
  1989年   11篇
  1988年   11篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
排序方式: 共有304条查询结果,搜索用时 15 毫秒
1.
催化裂化是石油化工的核心单元之一.从催化裂化尾气中分离出来的碳四馏分富含许多的不饱和烯烃,如1-丁烯、顺、反式-2-丁烯以及少量的1,3-丁二烯,这些不饱和烯烃可以通过后续聚合反应,生成合成橡胶和工程塑料的重要原料,具有重要的应用价值.上述工艺过程对原料中1,3-丁二烯的含量(<100~200 ppm)有严苛的要求.采用选择性加氢技术对碳四馏分中的1,3-丁二烯进行选择性加氢,将其转化为更高附加值的单烯烃是一个理想的解决方案.然而,1,3-丁二烯加氢反应得到的单烯烃可能发生深度加氢得到副产物丁烷.因此,开发高效选择性加氢催化剂对碳四资源的利用具有重要的现实意义.另一方面,1,3-丁二烯加氢反应可以作为模型反应,用来考察选择性加氢催化剂的性能.基于此,该反应无论在工业界还是学术界均受到广泛关注.尽管如此,有关1,3-丁二烯加氢催化剂研究进展方面的综述极少.仅有关于1,3-丁二烯加氢作为模型反应的综述报道.本文对过去半个世纪以来1,3-丁二烯加氢反应中不同催化剂的发展历程进行系统综述,特别是包括Pd,Pt和Au等的单一贵金属催化剂.重点介绍以下内容:(1)固体催化剂构效关系,包括活性金属尺寸效应、晶面和形貌效应以及载体效应(晶相、孔道和酸碱性);(2)高性能催化剂的设计新策略,如单原子催化剂、核壳结构催化剂、金属-离子液复合催化体系以及载体的形貌调控;(3)催化剂的反应机理和失活机理.提出了1,3-丁二烯选择性加氢高性能催化剂开发面临的挑战,并对潜在的发展方向进行了展望.本文认为随着纳米技术和金属纳米材料合成方法的快速发展,对贵金属活性组分进行原子层面上的调控(包括形貌、尺寸以及单原子配位环境等)已成为可能.这将有助于研制出一类新型高性能选择性加氢催化材料,从而实现高转化率条件下高附加值单烯烃的定向转化.此外,载体的酸碱性和孔道结构的调控有助于进一步调节催化剂的抗积炭性能,也是未来发展的一个重要方向.  相似文献   
2.
由于独特的结构和广泛的应用,多取代环辛四烯及其苯并稠环衍生物的合成方法研究具有重要意义.本文报道了一种钯催化烯基溴化物与芳基溴化物的偶联反应.利用此钯催化的环化自偶联反应,以中等至较好的收率高选择性地从双溴代芳基或烯基化合物合成了多种二苯并[a,e]环辛四烯衍生物.  相似文献   
3.
以三苯基膦为催化剂,氮气保护下在苯中实现了取代苯酚与α-取代-2,3-丁二烯酸酯的β'-极化加成反应,合成了16个新型(Z)-2-[(苯氧基)(芳基)]次甲基-2-丁烯酸酯类化合物,其结构经1H NMR,13C NMR和MS(ESI)表征。  相似文献   
4.
发展了一种镍催化的烯基硼酸、亚胺和1,3-丁二烯的三组分偶联反应,用于高效合成含有1,4-二烯结构的高烯丙基胺类化合物.该反应的原料均简单易得,其中1,3-丁二烯是大宗化工产品.该过程实现了少有报道的1,3-丁二烯的1,4-双碳化反应.反应以优秀的区域选择性和立体选择性,高收率地合成了一系列(E)-高烯丙基胺产物,简单温和、无外加碱的反应条件使该方法具有广泛的底物范围和优秀的官能团兼容性.  相似文献   
5.
采用新工艺路线合成高熔点磷酸酯阻燃剂———对苯二酚双(二苯基磷酸酯)(HDP).首先采用对苯二酚和三氯氧磷合成中间产物,再将中间产物与苯酚反应,经分离纯化得到产品HDP,收率达到90%以上,常温下为白色固体.采用傅里叶红外光谱、氢谱、磷谱和质谱测试确定了其结构.同时,研究了HDP的阻燃性,并与间苯二酚双(二苯基磷酸酯)(RDP)进行了比较,研究发现当HDP和RDP分别与成炭剂酚醛树脂(NP)按20/10比例添加到丙烯腈-丁二烯-苯乙烯(ABS)树脂中,增强了复合材料凝聚相阻燃作用,极限氧指数(LOI)有所提高.通过热重及锥形量热分析两种复合材料以及各种组分的热降解过程,阻燃剂的添加对ABS树脂的热稳定性和残炭量明显提高,而且ABS/HDP/NP复合材料的抑烟性更好;同时采用扫描电镜(SEM)和X射线能量色散谱(EDS),发现ABS/HDP/NP复合材料燃烧后成炭空隙均匀,其残炭中磷分布比ABS/RDP/NP复合材料残炭中的磷分布更加均匀.研究表明,HDP与NP互配添加到ABS中,在凝聚相阻燃作用优于RDP.  相似文献   
6.
研究了反式-1,4-丁二烯-异戊二烯共聚橡胶(TBIR)应用于航空轮胎胎侧胶[天然橡胶(NR)/顺丁橡胶(BR)/TBIR]的耐热氧老化性能. 结果表明, 与NR/BR硫化胶相比, 10~20份质量的TBIR取代BR后, NR/BR/TBIR硫化胶的交联密度明显提高, 压缩温升降低2.2~3.4 ℃, 耐屈挠疲劳性能提高约100%, 填料分散性改善, 填料团聚体体尺寸减小, 拉伸性能基本不变. 随热氧老化时间延长, 硫化胶的交联密度先增加后降低, 并用TBIR的硫化胶交联密度在老化48 h后趋于平缓. 与NR/BR相比, 老化后的NR/BR/TBIR硫化胶生热最低, 耐屈挠疲劳性最高.  相似文献   
7.
合成了6种单茂稀土催化剂Cp’LnR2(THF)n(其中,Cp’=C5H5,C5Me4SiMe3;R=CH2C6H4NMe2-o,CH2SiMe3;Ln=Sc,Y,Lu;n=0或1),并以[Ph3C][B(C6F5)4]为助催化剂,甲苯为溶剂,考察催化剂结构对丁二烯聚合活性,立体选择性,催化剂利用率以及聚合物分子量和分子量分布的影响.通过1H-NMR,13C-NMR,FTIR,GPC以及DSC对聚丁二烯进行表征,结果表明,当Cp’=C5H5,R=CH2C6H4NMe2-o,Ln=Sc,n=0时,催化剂(C5H5)Sc(CH2C6H4NMe2-o)2对丁二烯聚合活性最高,可达9600 kg-polymer/mol-Sc·h,催化剂利用率为45%,聚丁二烯顺-1,4结构含量在96%~98%之间,分子量分布窄,指数在1.3左右;以甲苯或氯苯作为聚合溶剂时,聚合活性最高,聚丁二烯分子量保持窄分布,在所有溶剂中聚丁二烯顺-1,4结构含量均达到96%以上;催化剂聚合活性随温度下降而降低,而聚合物分子量分布有变窄的趋势,温度对聚丁二烯立体选择性无明显影响;当[Bd]/[Sc]摩尔比从500增加到3000时,聚合反应1 min转化率均达到100%,聚丁二烯分子量呈可控线性增大,最高达44.6×104,且均保持聚合物窄分布.DSC谱图表明聚丁二烯Tg为-107℃,当升降温速率为10 K/min时,在-63℃和-8℃附近呈现出明显的冷结晶峰和熔融峰.  相似文献   
8.
9.
吴妹  丑凌军  宋焕玲 《催化学报》2013,34(4):789-797
制备了不同金属改性的钛硅分子筛样品M-TS-1 (M = V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, La, 负载量为1%), 并研究了其催化丁二烯环氧化反应的性能. 结果表明, V, Cr, Mn的加入导致H2O2无效分解, 因而在丁二烯环氧化反应中表现出较高的H2O2转化率和较低有效利用率; Fe, Co, Ni以及稀土金属La均在一定程度上促进了TS-1对H2O2的有效利用; Cu, Zn抑制了H2O2的转化, 使得H2O2转化率和有效利用率都较低; Cd有效提高了TS-1的催化活性, H2O2转化率和有效利用率均接近100%. 采用X射线衍射、N2吸附-脱附、X射线光电子能谱、傅里叶变换红外光谱等手段表征了上述各金属的改性对TS-1骨架结构以及Ti活性中心周围电子环境的影响. 结果表明, 各M-TS-1样品的骨架结构都仍保持原有的MFI构型, 但是TS-1中Ti活性中心周围的电子环境受到来自各种金属的不同程度影响, 关联催化活性时没有特定的规律性.  相似文献   
10.
以1,3-丁二烯为代表的共轭二烯烃是重要的有机合成原料,在有机合成领域有重要的应用价值.综述了以1,3-丁二烯等为代表的共轭二烯烃定向加成的研究进展,并展望了其发展和应用前景.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号