首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25496篇
  免费   4201篇
  国内免费   3361篇
化学   9959篇
晶体学   258篇
力学   4097篇
综合类   245篇
数学   7403篇
物理学   11096篇
  2024年   67篇
  2023年   307篇
  2022年   466篇
  2021年   673篇
  2020年   961篇
  2019年   785篇
  2018年   774篇
  2017年   862篇
  2016年   1032篇
  2015年   915篇
  2014年   1316篇
  2013年   2289篇
  2012年   1386篇
  2011年   1592篇
  2010年   1348篇
  2009年   1693篇
  2008年   1712篇
  2007年   1731篇
  2006年   1670篇
  2005年   1360篇
  2004年   1259篇
  2003年   1170篇
  2002年   986篇
  2001年   851篇
  2000年   851篇
  1999年   727篇
  1998年   675篇
  1997年   557篇
  1996年   446篇
  1995年   373篇
  1994年   325篇
  1993年   259篇
  1992年   237篇
  1991年   227篇
  1990年   165篇
  1989年   130篇
  1988年   106篇
  1987年   89篇
  1986年   88篇
  1985年   96篇
  1984年   93篇
  1983年   52篇
  1982年   75篇
  1981年   62篇
  1980年   48篇
  1979年   44篇
  1978年   24篇
  1977年   25篇
  1976年   17篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
This paper is concerned with the Cauchy problem on the Boltzmann equation without angular cutoff assumption for hard potential in the whole space. When the initial data is a small perturbation of a global Maxwellian, the global existence of solution to this problem is proved in unweighted Sobolev spaces HN(Rx,v6) with N2. But if we want to obtain the optimal temporal decay estimates, we need to add the velocity weight function, in this case the global existence and the optimal temporal decay estimate of the Boltzmann equation are all established. Meanwhile, we further gain a more accurate energy estimate, which can guarantee the validity of the assumption in Chen et al. (0000).  相似文献   
2.
3.
We investigate the possibility of phantom crossing in the dark energy sector and the solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the Cosmic Microwave Background (CMB), local measurement of Hubble constant (H0), Baryon Acoustic Oscillation (BAO) and SnIa for this purpose. For a combination of CMB+BAO data that is related to early universe physics, phantom crossing in the dark energy sector was confirmed at a 95% confidence level and we obtained the constraint H0=71.03.8+2.9 km/s/Mpc at a 68% confidence level, which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combinations of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtained the constraint H0=70.25±0.78 km/s/Mpc at a 68% confidence level and the phantom crossing happening at the scale factor am=0.8510.031+0.048 at a 68% confidence level.  相似文献   
4.
A temperature control unit was implemented to vary the temperature of samples studied on a commercial Mobile Universal Surface Explorer nuclear magnetic resonance (MOUSE-NMR) apparatus. The device was miniaturized to fit the maximum MOUSE sampling depth (25 mm). It was constituted by a sample holder sandwiched between two heat exchangers placed below and above the sample. Air was chosen as the fluid to control the temperature at the bottom of the sample, at the interface between the NMR probe and the sample holder, in order to gain space. The upper surface of the sample was regulated by the circulation of water inside a second heat exchanger placed above the sample holder. The feasibility of using such a device was demonstrated first on pure water and then on several samples of bread dough with different water contents. For this, T1 relaxation times were measured at various temperatures and depths and were then compared with those acquired with a conventional compact closed-magnet spectrometer. Discussion of results was based on biochemical transformations in bread dough (starch gelatinization and gluten heat denaturation). It was demonstrated that, within a certain water level range, and because of the low magnetic field strength of the MOUSE, a linear relationship could be established between T1 relaxation times and the local temperature in the dough sample.  相似文献   
5.
6.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   
7.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   
8.
We present the fabrication of core-shell-satellite Au@SiO2-Pt nanostructures and demonstrate that LSPR excitation of the core Au nanoparticle can induce plasmon coupling effect to initiate photocatalytic hydrogen generation from decomposition of formic acid. Further studies suggest that the plasmon coupling effect induces a strong local electric field between the Au core and Pt nanoparticles on the SiO2 shell, which enables creation of hot electrons on the non-plasmonic-active Pt nanoparticles to participate hydrogen evolution reaction on the Pt surface. In addition, small SiO2 shell thickness is required in order to obtain a strong plamon coupling effect and achieve efficient photocatalytic activities for hydrogen generation.  相似文献   
9.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   
10.
Lithium-sulfur batteries (LSBs) with high energy density and low cost have been recognized as one of the most promising next-generation energy storage systems. Although it has taken decades of development, the practical application of LSBs has been hindered by several inherent obstacles, particularly the severe shuttle effect and sluggish reaction kinetics in the sulfur cathode. Various strategies have been proposed to address these problems via rational design of electrode materials and configurations. Freestanding sulfur cathode could be a promising strategy to improve the sulfur mass loading at the cathode level and energy density of LSBs. This minireview will briefly summary the recent advances in freestanding cathodes for LSBs. The advantages and disadvantages of various freestanding cathodes are discussed and the prospects for the development of flexible cathodes are envisioned.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号