首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   2篇
  国内免费   3篇
化学   17篇
晶体学   1篇
力学   1篇
物理学   42篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   10篇
  2011年   8篇
  2010年   4篇
  2009年   13篇
  2008年   4篇
  2007年   2篇
排序方式: 共有61条查询结果,搜索用时 125 毫秒
1.
《Comptes Rendus Physique》2015,16(2):193-203
The field of multiferroics has experienced a rapid progress resulting in the discovery of many new physical phenomena. BiFeO3 (BFO) compound, which is one of the few room-temperature single-phase multiferroics, has contributed subsequently to this progress. As a result, significant review articles have been devoted specifically to this famous system. This chapter is dedicated to the strain effects on the structure stability and property changes of BFO thin films. It is a short and non-exhaustive topical overview that may be seen as an invitation for interested readers to go beyond. There is a very active and prolific research in this field and we apologize to the authors whose relevant work is not cited here. After a short introduction, we will thus review the effect of strain on BFO films by describing the consequences on the structure and the phase transitions as well as on polar, magnetic and magnetoelectric properties.  相似文献   
2.
《Comptes Rendus Physique》2015,16(2):227-240
Multiferroics are gathering solid-state matter in which several types of orders are simultaneously allowed, as ferroelectricity, ferromagnetism (or antiferromagnetism), ferroelasticity, or ferrotoroidicity. Among all, the ferroelectric/ferromagnetic couple is the most intensively studied because of potential applications in novel low-power magnetoelectric devices. Switching of one order thanks to the other necessarily proceeds via the nucleation and growth of coupled domains. This review is an introduction to the basics of ferroelectric/ferromagnetic domain formation and to the recent microscopy techniques devoted to domains imaging, providing new insights into the archetypal multiferroic domain morphologies. Some relevant examples are also given to illustrate some of the unexpected properties of domain walls, as well as the way these domain walls can be manipulated altogether thanks to various types of magnetoelectric coupling.  相似文献   
3.
《Comptes Rendus Physique》2015,16(2):143-152
Motivated by the potential applications of their intrinsic cross-coupling properties, the interest in multiferroic materials has constantly increased recently, leading to significant experimental and theoretical advances. From the theoretical point of view, recent progresses have allowed one to identify different mechanisms responsible for the appearance of ferroelectric polarization coexisting—and coupled—with magnetic properties. This chapter aims at reviewing the fundamental mechanisms devised so far, mainly in transition-metal oxides, which lie at the origin of multiferroicity.  相似文献   
4.
通过固相反应法制备了Bi1-xGdxFeO3多铁性陶瓷,XRD图谱表明,随着掺杂量的增大其由三角钙钛矿结构转变为正交钙钛矿结构,Raman图谱研究亦表明Gd掺杂可能引起了其结构的转变;且随着Gd掺杂量的增大,样品的矫顽力、剩磁与饱和磁化强度都大大提高,说明Bi1-xGdxFeO3陶瓷的铁磁性在不断增强,这可能是由于Gd...  相似文献   
5.
In this paper, we show that the leakage current properties of BiFeO3 (BFO) thin films have been greatly improved by Zr-doping. In contrast, the magnetic properties of Zr-doped BFO films are affected as a weak ferromagnetism. Beyond the double-exchange interactions arising from the creation of Fe2+, we propose another simple model considering the replacement of the magnetically active Fe3+, time to time, by a non-active Zr4+, which is expected to induce a local ferromagnetic coupling rather than an antiferromagnetic one.  相似文献   
6.
Recent advances in thin-film deposition techniques, such as molecular beam epitaxy and pulsed laser deposition, have allowed for the manufacture of heterostructures with nearly atomically abrupt interfaces. Although the bulk properties of the individual heterostructure components may be well-known, often the heterostructures exhibit novel and sometimes unexpected properties due to interface effects. At heterostructure interfaces, lattice structure, stoichiometry, interface electronic structure (bonding, interface states, etc.), and symmetry all conspire to produce behavior different from the bulk constituents. This review discusses why knowledge of the electronic structure and composition at the interfaces is pivotal to the understanding of the properties of heterostructures, particularly the (spin polarized) electronic transport in (magnetic) tunnel junctions.  相似文献   
7.
The influence of the potassium (K+) doping on the structure of multiferroic BiFeO3 and its relation with ferroelectric and magnetic properties was investigated for perovskites with composition Bi1−xKxFeO3 in the range 0?x?0.07. All the studied samples are described in R3c space group (No. 161). Typical cell parameters (BiFeO3) in hexagonal setting are ahex=5.5769(2) Å and chex=13.8531(2) Å with Z=6 formula units. The structure determination shows that as the K+ content increases, the average cations displacements decrease reducing the polar character of doped samples with respect to pure BiFeO3 and leading to a change from rhombohedral to a pseudo-cubic symmetry. A structural disorder is related to the substitution of K+, which results in strong diffuse scattering (DS) located at the bottom of the Bragg peaks. Magnetic measurements reveal that all the compounds remain antiferromagnetic at room temperature (RT) with almost no change in the transition temperature (Néel temperature TN).  相似文献   
8.
The Bi1−xAxFe1−xTixO3 (A—Ca, Sr, Pb, Ba) and BiFe1−xTixO3+δ systems have been studied using X-ray, neutron powder diffraction and magnetization measurements in a magnetic field up to 14 T. It was found that all Bi1−xAxFe1−xTixO3 solid solutions are rhombohedral up to x=0.3. In the case of BiFe1−xTixO3+δ the rhombohedral distortion preserved up to x=0.11. A homogeneous weakly ferromagnetic state was found for Bi1−xCaxFe1−xTixO3 (0.15≤x≤0.25) and BiFe1−xTixO3+δ (0.06≤x≤0.11), probably due to magnetoelectric interactions, whereas Bi1−xAxFe1−xTixO3 (A—Sr, Pb, Ba) compounds above doping level x>0.1 seem to be collinear antiferromagnets.  相似文献   
9.
Electrical conductance and X-ray diffraction (XRD) measurements of lanthanum-deficiency La1−xxMnO3 (x=0.05, 0.10 and 0.20) polycrystalline samples were performed to examine the effect of the internal pressure at B-site on the conduction mechanism. The structural study reveals that all samples crystallize in the rhombohedral system. The electronic conduction appears to be thermally activated at high temperature, which indicates the presence of semiconductor behaviour. The increase of the x content converts 3x Mn3+ to 3x Mn4+ ions with smaller ionic radius, which reduces the internal pressure and leads to the increase of the one-electron bandwidth W. This increase causes the appearance of metallic behaviour at low temperature for x=0.10 and 0.20 content.  相似文献   
10.
Magnetic and dielectric measurements confirm the multiferroic nature of LuMnO3. Raman spectra of LuMnO3 have been recorded in the 77–800 K range covering both the antiferromagnetic transition at 90 K and the ferroelectric–paraelectric transition at 750 K. The changes in the phonon modes frequencies and band-widths indicate the presence of phonon–spin coupling in the antiferromagnetically ordered phase. The ferroelectric–paraelectric transition is accompanied by the broadening and disappearance of many of the phonon modes. Some of the phonon modes also show anomalies at the ferroelectric transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号