首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   13篇
  国内免费   38篇
化学   181篇
晶体学   2篇
综合类   6篇
物理学   34篇
  2023年   10篇
  2022年   11篇
  2021年   19篇
  2020年   14篇
  2019年   14篇
  2018年   12篇
  2017年   5篇
  2016年   10篇
  2015年   5篇
  2014年   12篇
  2013年   10篇
  2012年   9篇
  2011年   4篇
  2010年   11篇
  2009年   20篇
  2008年   8篇
  2007年   11篇
  2006年   11篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1990年   2篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
1.
The discharge of diverse pollutants has led to a complex water environment and posed a huge health threat to humans and animals. Self-propelled micromotors have recently attracted considerable attention for efficient water remediation due to their strong localized mass transfer effect. However, a single functionalized component is difficult to tackle with multiple contaminants and requires to combine different decontamination effects together. Here, we introduced a multifunctional micromotor to implement the adsorption and degradation roles simultaneously by integrating the poly(aspartic acid) (PASP) adsorbent with a MnO2-based catalyst. The as-prepared micromotors are well propelled in contaminated waters by MnO2 catalyzing hydrogen peroxide. In addition, the catalytic ramsdellite MnO2(R-MnO2) inner layer is decorated with Fe2O3 nanoparticles to improve their catalytic performance, contributing to an excellent degradation ability with 90% tetracycline (TC) removal in 50 minutes by enhanced Fenton-like reactions. Combining the attractive adsorption capability of poly (aspartic acid) (PASP), the composite micromotors offer an efficient removal of heavy metal ions in short time. Moreover, the designed micromotors are able to simultaneously remove antibiotic and heavy metals in mixed contaminants circumstance just in single treatment. This multifunctional micromotor with distinctive decontamination ability exhibits a promising prospective in treating multiple pollutants in the future.  相似文献   
2.
Chemodynamic therapy(CDT) is an emerging endogenous stimulation activated tumor treatment approach that exploiting iron-containing nanomedicine as catalyst to convert hydrogen peroxide(H_2O_2)into toxic hydroxyl radical(·OH) through Fenton reaction.Due to the unique characteristics(weak acidity and the high H_2O_2 level) of the tumor microenvironment,CDT has advantages of high selectivity and low side effect.However,as an important substrate of Fenton reaction,the endogenous H_2O_2 in tumor is still insufficient,which may be an important factor limiting the efficacy of CDT.In order to optimize CDT,various H_2O_2-generating nanomedicines that can promote the production of H_2O_2 in tumor have been designed and developed for enhanced CDT.In this review,we summarize recently developed nanomedicines based on catalytic enzymes,nanozymes,drugs,metal peroxides and bacteria.Finally,the challenges and possible development directions for further enhancing CDT are prospected.  相似文献   
3.
洋葱色素的提取及抗氧化活性的测定   总被引:6,自引:0,他引:6  
分别用芬顿(Fenton)反应法和1,1-二苯-2-苦肼基(DPPH)法测定了洋葱色素的抗氧化作用。结果表明,洋葱色素对羟自由基和DPPH自由基均有一定的清除作用,其清除率大小依次为42.4%,58.2%。洋葱色素是十分具有开发利用价值的天然色素。  相似文献   
4.
五氯苯酚降解的超声诱导   总被引:10,自引:0,他引:10  
沈壮志  程建政  吴胜举 《化学学报》2003,61(12):2016-2019
人为或自然因素会导致挥发性或不挥发有毒有机物存在于饮用水中,这一现象 已成为国际上共同关心的问题。从长期对健康状况来说,即使不能辨别饮用水中的 味道和气味,但只要有十亿分之几毫克的有毒有机物存在,就足以使水不能饮用。 所以,废水处理刻不容缓。同废水处理相关的实验方法中,超声作为一种处理方法 ,早有报道,因为超声化学效应主要是空化,空化是自由基,特别是羟基自由基产 生的根源,而痉基自由基是强烈而非特殊的氧化物,它能迅速同水中化合物发生反 应。作者以五氯苯酚为模拟水样,分别用低频(16 kHz)和高频[(800 ± 1) kHz]以及其组合进行超声降解研究。研究表明复频降解效果最好,最差为低频。在 Fenton类试剂存在下,与Fenton类单独降解效果相比,复频则是它的20.93倍,高 频是它的4.9倍,低频与它几乎无变化。实验表明,频率组合对有机污染物的降解 是一条有效途径,但需要更进一步的研究。  相似文献   
5.
Environmental Fenton chemistry has been poorly constrained within the marine environment at a multi-component level. A simple, unique, reconfiguration of a flow-injection analytical system combined with luminol chemiluminescence allows quasi-simultaneously the measurement, using a single load-inject valve and a single photon multiplier tube, of reduced iron, Fe(II), and hydrogen peroxide. The system enables rapid, every 22 s, measurements with good accuracy at environmentally relevant concentrations, less than 5% relative standard deviations on both a 5 nM Fe(II) standard and a 60 nM hydrogen peroxide standard. Limits of detection were as low as 40 pM Fe(II) and 100 pM hydrogen peroxide. The system showed excellent capability by measuring from within an organic rich seawater the photochemically induced production of Fe(II) and hydrogen peroxide and their subsequent cycling and Fenton like interactions.  相似文献   
6.
The intensity of the linear dichroism (LD) in the absorption region of DNA (about 260 nm) decreased with time in the presence of [Fe(EDTA)]2+ (EDTA=ethylenediaminetetraacetic acid), H2O2, and ascorbate. The decrease in the LD signal indicated either an increase in flexibility, a shortening of the DNA stem, or both, owing to oxidative cleavage, and was best described by the difference between the two single‐exponential‐decay curves, thereby suggesting the involvement of two sequential first‐order reactions. The fast reaction was assigned to cleavage of one of two DNA strands, which increased the flexibility of the DNA. The slow reaction corresponded to cleavage at or near the first cleavage site, thereby shortening the DNA stem. The presence of an intercalator, including ethidium, propidium, 9‐aminoacridine, and proflavine, inhibited the first step of the cleavage reaction. One of the possible reasons for the observed inhibition might be a change in the DNA conformation near the intercalation site. Intercalation caused an unwinding and elongation of the DNA and resulted in changes in the location of the H atoms of the sugar moiety, which is known to be the main site at which hydroxyl radicals react.  相似文献   
7.
In this paper, a novel improvement in the catalytic Fenton reaction system named MHACF-NH2-MIL-101(Cr) was constructed based on H2 and Pd/NH2-MIL-101(Cr). The improved system would result in an accelerated reduction in FeIII, and provide a continuous and fast degradation efficiency of the 10 mg L-1 4-chlorophenol which was the model contaminant by using only trace level FeII. The activity of Pd/NH2-MIL-101(Cr) decreased from 100% to about 35% gradually during the six consecutive reaction cycles of 18 h. That could be attributed to the irreversible structural damage of NH2-MIL-101(Cr).  相似文献   
8.
Carbon dots(CDs) with multi-color emissive properties and a high photoluminescent quantum yield(PLQY) have attracted great attention recently due to their potential applications in chemical,environmental,biological and photo-electronic fields.Solvent-dependent effect in photoluminescence provides a facial and effective approach to tune the emission of CDs.In this study,green emissive nitrogen-doped carbon dots(N-CDs) are synthesized from p-hydroquinone and ethylenediamine through a simple hydrothermal method.The as-prepared N-CDs possess a robust excitation-independent green luminescence and a high PLQY of up to 15.9%.Further spectroscopic characterization indicates that the high PLQY is achieved by the balance of nitrogen doping states and the surface passivation extent in CDs.The N-CDs also exhibit solvent-dependent multi-color emissive property and distinct PLQY in different solvents(the maximum can reach up to 25.3%).Furthermore,the as-prepared N-CDs are applied as fluorescence probes to detect acetone and H2O2 in water.This method has exhibited a low detection limit of acetone(less than 0.1 %) and a quick and linear response to the H_2O_2 with the concentration from 0 to 120 μmol/L.This work broadens the knowledge of applying CDs as probes in the bio and chemical sensing fields.  相似文献   
9.
Core-shell TiO2-based photocatalysts with specific composition, morphology, and functionality have attracted considerable attention for their excellent degradation properties on organic pollutants via a photocatalytic oxidation process. Herein, a N-TiO2@NH2-MIL-88(Fe) core-shell structure was prepared by coating NH2-MIL-88(Fe) on nitrogen-doped TiO2(N-TiO2) nanoparticles. Introduction of heteroatom nitrogen to pure TiO2 expands the spectral response range, leading to enhanced quantum efficiency of photocatalyst. Furthermore, loading NH2-MIL-88(Fe) on N-TiO2 improved the adsorption ability of the nanocomposites due to the porous tunnels of NH2-MIL-88(Fe). The resulted core-shell N-TiO2@NH2-MIL-88(Fe) nanocomposites realized the transfer of photo excited electrons from N-TiO2 to NH2-MIL-88(Fe) rapidly, partially reduced Fe3+ to Fe2+ in NH2-MIL-88(Fe), and further enhanced the Fenton effect on efficiently degrading methylene blue dye(MB) under visible light(λ ≥ 420 nm) with the assistance of H2O2.  相似文献   
10.
An HPLC assay for hydroxyl radicals is described. The hydroxyl radical was trapped by terephthalic acid (non-fluorescent), and 2-hydroxyl terephthalic acid (fluorescent) was quantitated by HPLC-fluorescence detection. At a terephthalic acid concentration of 4.25 mmol/L, the hydroxyl radical formed in the Fenton reaction was successfully assayed in the concentration range of hydrogen peroxide of 2.5-50 micro mol/L, where the concentration of Fe(II) was 50 micro mol/L. The fluorescence of 2-hydroxy terephthalate was stable at 24 h, and its detection limit by this method was 5 nmol/L (100 fmol).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号