首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  国内免费   1篇
化学   4篇
晶体学   1篇
物理学   6篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2009年   2篇
  2004年   1篇
排序方式: 共有11条查询结果,搜索用时 500 毫秒
1.
In pursuit of a better understanding of how electronic excitation migrates within complex structures, the concept of resonance energy transfer is being extended and deployed in a wide range of applications. Utilizing knowledge of the quantum interactions that operate in natural photosynthetic systems, wide‐ranging molecular and solid‐state materials are explored in the cause of more efficient solar energy harvesting, while advances in theory are paving the way for the development and application of fundamentally new mechanisms. In this review, an introduction to the underlying processes that cause singlet‐singlet and triplet‐triplet energy transfer leads into a discussion of how a new conception of these fundamental processes has emerged over recent years. Illustrative examples relevant to laser science and photonics are described, including photosynthetic light‐harvesting, light‐activated sensors, processes of cooperative and accretive energy pooling and quantum cutting in rare earth‐doped crystals, and incoherent triplet‐triplet energy upconversion in molecular solutions.  相似文献   
2.
王倩  张为欢  欧阳绍业  杨斌  张约品  夏海平 《光子学报》2015,44(1):116004-0116004
实验采用高温熔融法制备了一系列Dy3+离子、Tb3+离子单掺或共掺氟氧碲酸盐玻璃样品.测试了不同摩尔含量的Dy3+离子和Tb3+离子的氟氧碲酸盐玻璃样品的密度,分析了紫外-可见透射光谱、激发光谱、发射光谱、发光衰减曲线,研究了不同摩尔含量的Dy3+离子和Tb3+离子的氟氧碲酸盐玻璃样品光谱性能及Dy3+离子到Tb3+离子能量传递机理.结果表明:Dy3+离子、Tb3+离子单掺或共掺氟氧碲酸盐玻璃样品的密度均大于5g·cm-3,最大可达6.09g·cm-3;Dy3+离子可以敏化Tb3+离子,促进其发光,但当Dy3+离子超过一定浓度后,会发生离子间浓度猝灭效应,Tb3+离子的发光反而降低.试验测得,Dy3+离子的最佳掺杂浓度为1.0mol%,此时,Tb3+离子掺杂浓度为6.0mol%,Tb3+离子发光效果最强.依据Dexter能量传输理论,并对Dy3+离子和Tb3+离子的能级图及能级间的跃迁进行分析,可知Dy3+离子和Tb3+离子间的能量传递方式为非辐射共振传递.  相似文献   
3.
By conventional high-temperature melting method, Yb3+/Er3+/Tm3+ co-doped phosphate glass was synthesized. After annealing the precursor glass, the phosphate glass ceramic (GC) was obtained. By measuring the X-ray diffraction (XRD) spectrum, it is proved that the LiYbP4O12 and Li6P6O18 nano-crystals have existed in the phosphate GC. The up-conversion (UC) emission intensity of the GC is obvious stronger compared to that of the glass. The reason is that the shorter distance between rare earth ions in the glass ceramic increases the energy transitions from the sensitized ions (Yb3+) to the luminous ions (Er3+ and Tm3+). By studying the dependence of UC emissions on the pump power, the 523 and 546 nm green emissions of Er3+ ions in the glass are two-photon processes. But in the glass ceramic, they are two/three-photon processes. The phenomenon implies that a three-photon process has participated in the population of the two green emissions. Using Dexter theory, we discuss the energy transitions of Er3+ and Tm3+. The results indicate the energy transition of Tm3+ to Er3+ is very strong in the GC, which changes the population mechanism of UC emissions of Er3+.  相似文献   
4.
Recently, organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) materials have aroused huge attention in both academia and industry. Compared with fluorescent and phosphorescent materials, TADF materials can theoretically capture 100 % excitons without incorporating noble metals, making them effective emitters and hosts for OLEDs simultaneously. Here, in this review, our recent works on mechanisms and materials of high performance TADF‐sensitized phosphorescent (TSP) OLEDs, TADF‐sensitized fluorescent (TSF) OLEDs and TADF‐sensitized TADF (TST) OLEDs are summarized. Finally, we propose the outlook for the further development and application of TADF‐sensitized OLEDs.  相似文献   
5.
An investigation of the mechanism of the fluorescence quenching by Cu2+ for a conjugated polymer system initially designed as a fluorescence “turn-on” chemosensor based on chelation enhanced fluorescence (CHEF) is described in this paper. Unlike all other metal cations tested, the polymer/Cu2+ hybrid system with a 1:1 ratio between the receptor and Cu2+ has only weak fluorescence with λmax = 490 nm and a quantum yield of 0.004 in THF at room temperature. In solvent glasses at 77 K the fluorescence remained quenched suggesting that the quenching mechanism was due to energy transfer between the Cu2+ and the conjugated polymer backbone. The energy transfer quenching competes effectively with the electron transfer involved in the CHEF resulting in a more selective chemosensory system. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
6.
The process of triplet–triplet annihilation (TTA) of 1,2-benzanthracene (1,2-BA) incorporated into polymer films of polyvinyl butyral has been investigated in the temperature interval 80–360 K. An analysis of the kinetics of the decay of delayed annihilation fluorescence (DAF) of 1,2-BA has shown that the process of the triplet excitation energy transfer in a disperse medium of the polymer at distant times of the DAF decay can be described using the approximation of random walks of the triplet energy in the inhomogeneous medium of the polymer. At low temperatures, at the initial times of DAF decay the TTA process is described with the aid of a model of static annihilation.  相似文献   
7.
Excitation energy transfer (EET) is a process where the electronically excitation is transferred from a donor to an acceptor. EET is widely seen in both natural and in artificial systems, such as light‐harvesting in photosynthesis, the fluorescence resonance energy transfer technique, and the design of light‐emitting molecular devices. In this work, we outline the theories describing both singlet and triplet EET (SEET and TEET) rates, with a focus on the physical nature and computational methods for the electronic coupling factor, an important parameter in predicting EET rates. The SEET coupling is dominated by the Coulomb coupling, and the remaining short‐range coupling is very similar to the TEET coupling. The magnitude of the Coulomb coupling in SEET can vary much, but the contribution of short‐range coupling has been found to be similar across different excited states in naphthalene. The exchange coupling has been believed to be the major physical contribution to the short‐range coupling, but it has been pointed out that other contribution, such as the orbital overlap effect is similar or even larger in strength. The computational aspects and the subsequent physical implication for both SEET and TEET coupling values are summarized in this work. © 2013 The Authors. International Journal of Quantum Chemistry Published by Wiley Periodicals, Inc.  相似文献   
8.
测量并分析了Er3+∶PLZT电光陶瓷的吸收光谱和上转换光谱,利用Dexter理论和速率方程理论研究了该材料的发光特性.通过Dexter理论计算得到4I13/2+4I13/2→4I9/2+4I15/2( ET1)和4I11/2+4I11/2→ 4I15/2+4F7/2(ET2)能量传递过程的交叉驰豫几率分别为2.06×105 s-1和1.61 ×105 s-1.以此为基础,结合Er3+跃迁的动力学模型,利用速率方程讨论了交叉驰豫过程对4 I13/2,4I11/2,4I9/2能级上离子数的影响.通过分析可知,ET1和ET2交叉驰豫过程将会使4I13/2能级粒子数大幅度减少,不利于1550hm发光,而对800 nm的发光起到较大的促进作用.  相似文献   
9.
We report the preparation of several new porphyrin homodimers bridged by a platinum(II) ion in which very intense electronic communication through the coordination link occurs. Moreover, the synthesis of a new porphyrin dyad and its photophysical properties are reported. This dyad exhibits the fastest singlet energy transfer ever reported for synthetic systems between a zinc(II) porphyrin and a porphyrin free base. This extremely fast transfer (~100 femtoseconds) is in the same range as the fastest one measured in natural systems. This feature is due to the platinum(II) linker, which allows for strong MO couplings between the two porphyrin units as experimentally supported by electrochemistry and corroborated by DFT computations.  相似文献   
10.
将高量子效率的磷光材料fac-tris-2-phenylpyridine iridium(III) (Ir(ppy)3)按不同的比例掺杂到具有载流子传输能力的主体材料poly(N-vinylcarbazole) (PVK)中作为发光层制备磷光电致发光器件。通过对器件发光机制的研究,发现光致发光过程中起主导作用的是Fo¨ster能量转移机制;而在电致发光过程中,器件的发光性能受Dexter能量转移和电荷陷获2种能量传递形式的影响。器件的I-V-L特性表明:Ir(ppy)3的掺杂比例为5%时,器件的光功率效率最大,能量转移最充分。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号