首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
化学   2篇
物理学   64篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   13篇
  2009年   8篇
  2008年   10篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
1.
Despite intense research on the blood oxygenation level-dependent (BOLD) signal underlying functional magnetic resonance imaging, our understanding of its physiological basis is far from complete. In this study, it was investigated whether the so-called poststimulus BOLD signal undershoot is solely a passive vascular effect or actively induced by neural responses. Prolonged static and flickering black-white checkerboard stimulation with isoluminant grey screen as baseline condition were employed on eight human subjects. Within the same region of interest, the positive BOLD time courses for static and flickering stimuli were identical over the entire stimulus duration. In contrast, the static stimuli exhibited no poststimulus BOLD signal undershoot, whereas the flickering stimuli caused a strong BOLD poststimulus undershoot. To ease the interpretation, we performed an additional study measuring both BOLD signal and cerebral blood flow (CBF) using arterial spin labeling. Also for CBF, a difference in the poststimulus period was found for the two stimuli. Thus, a passive blood volume effect as the only contributor to the poststimulus undershoot comes short in explaining the BOLD poststimulus undershoot phenomenon for this particular experiment. Rather, an additional active neuronal activation or deactivation can strongly modulate the BOLD poststimulus behavior. In summary, the poststimulus time course of BOLD signal could potentially be used to differentiate neuronal activity patterns that are otherwise indistinguishable using the positive evoked response.  相似文献   
2.
Signal changes can be detected by proton density-weighted functional imaging in both the brain and the spinal cord. These are attributed to changes in extravascular water proton (signal enhancement by extravascular protons) density during neuronal activation. In this study, we used this technique to detect correlations between acupoint stimulation and neural activity in the spinal cord. Stimulation of acupoints associated with treatment of sensorimotor deficits (LI4 and LI11) was performed on 11 volunteers. During stimulation, 8 of the 11 subjects had consistent functional activations in C6/C7. A bilateral activation pattern was common. Our findings show that acupoint stimulation modulates activity in the spinal cord.  相似文献   
3.
4.
Functional magnetic resonance imaging (fMRI) research has revealed not only important aspects of the neural basis of cognitive and perceptual functions, but also important information on the relation between high-level brain functions and physiology. One of the central outstanding questions, given the features of the blood oxygenation level-dependent (BOLD) signal, is whether and how autonomic nervous system (ANS) functions are related to changes in brain states as measured in the human brain. A straightforward way to address this question has been to acquire external measurements of ANS activity such as cardiac and respiratory data, and examine their relation to the BOLD signal. In this article, we describe two conceptual approaches to the treatment of ANS measures in the context of BOLD fMRI analysis. On the one hand, several research lines have treated ANS activity measures as noise, considering them as nothing but a confounding factor that reduces the power of fMRI analysis or its validity. Work in this line has developed powerful methods to remove ANS effects from the BOLD signal. On the other hand, a different line of work has made important progress in showing that ANS functions such as cardiac pulsation, heart rate variability and breathing rate could be considered as a theoretically meaningful component of the signal that is useful for understanding brain function. Work within this latter framework suggests that caution should be exercised when employing procedures to remove correlations between BOLD data and physiological measures. We discuss these two positions and the reasoning underlying them. Thereafter, we draw on the reviewed literature in presenting practical guidelines for treatment of ANS data, which are based on the premise that ANS data should be considered as theoretically meaningful information. This holds particularly when studying cortical systems involved in regulation, monitoring and/or generation of ANS activity, such as those involved in decision making, conflict resolution and the experience of emotion.  相似文献   
5.
The dorsal stream is a dominant visuomotor pathway that connects the striate and extrastriate cortices to posterior parietal areas. In turn, the posterior parietal areas send projections to the frontal primary motor and premotor areas. This cortical pathway is hypothesized to be involved in the transformation of a visual input into the appropriate motor output. In this study we used functional magnetic resonance imaging (fMRI) of the entire brain to determine the patterns of activation that occurred while subjects performed a visually guided motor task. In nine human subjects, fMRI data were acquired on a 4-T whole-body MR system equipped with a head gradient coil and a birdcage RF coil using aT*2-weighted EPI sequence. Functional activation was determined for three different tasks: (1) a visuomotor task consisting of moving a cursor on a screen with a joystick in relation to various targets, (2) a hand movement task consisting of moving the joystick without visual input, and (3) a eye movement task consisting of moving the eyes alone without visual input. Blood oxygenation level-dependent (BOLD) contrast-based activation maps of each subject were generated using period cross-correlation statistics. Subsequently, each subject's brain was normalized to Talairach coordinates, and the individual maps were compared on a pixel by pixel basis. Significantly activated pixels common to at least four out of six subjects were retained to construct the final functional image. The pattern of activation during visually guided movements was consistent with the flow of information from striate and extrastriate visual areas, to the posterior parietal complex, and then to frontal motor areas. The extensive activation of this network and the reproducibility among subjects is consistent with a role for the dorsal stream in transforming visual information into motor behavior. Also extensively activated were the medial and lateral cerebellar structures, implicating the cortico–ponto–cerebellar pathway in visually guided movements. Thalamic activation, particularly of the pulvinar, suggests that this nucleus is an important subcortical target of the dorsal stream.  相似文献   
6.
Functional magnetic resonance imaging (fMRI) is a powerful tool for examining kidney function, including organ blood flow and oxygen bioavailability. We have used contrast enhanced perfusion and blood oxygen level-dependent (BOLD) MRI to assess kidney transplants with normal function, acute tubular necrosis (ATN) and acute rejection. BOLD and MR-perfusion imaging were performed on 17 subjects with recently transplanted kidneys. There was a significant difference between medullary R2? values in the group with acute rejection (R2?=16.2/s) compared to allografts with ATN (R2?=19.8/s; P=.047) and normal-functioning allografts (R2?=24.3/s;P=.0003). There was a significant difference between medullary perfusion measurements in the group with acute rejection (124.4±41.1 ml/100 g per minute) compared to those in patients with ATN (246.9±123.5 ml/100 g per minute; P=.02) and normal-functioning allografts (220.8±95.8 ml/100 g per minute; P=.02). This study highlights the utility of combining perfusion and BOLD MRI to assess renal function. We have demonstrated a decrease in medullary R2? (decrease deoxyhemoglobin) on BOLD MRI and a decrease in medullary blood flow by MR perfusion imaging in those allografts with acute rejection, which indicates an increase in medullary oxygen bioavailability in allografts with rejection, despite a decrease in blood flow.  相似文献   
7.
Functional connectivity measures based upon low-frequency blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD fMRI) signal fluctuations have become a widely used tool for investigating spontaneous brain activity in humans. Still unknown, however, is the precise relationship between neural activity, the hemodynamic response and fluctuations in the MRI signal. Recent work from several groups had shown that correlated low-frequency fluctuations in the BOLD signal can be detected in the anesthetized rat — a first step toward elucidating this relationship. Building on this preliminary work, through this study, we demonstrate that functional connectivity observed in the rat depends strongly on the type of anesthesia used. Power spectra of spontaneous fluctuations and the cross-correlation-based connectivity maps from rats anesthetized with α-chloralose, medetomidine or isoflurane are presented using a high-temporal-resolution imaging sequence that ensures minimal contamination from physiological noise. The results show less localized correlation in rats anesthetized with isoflurane as compared with rats anesthetized with α-chloralose or medetomidine. These experiments highlight the utility of using different types of anesthesia to explore the fundamental physiological relationships of the BOLD signal and suggest that the mechanisms contributing to functional connectivity involve a complicated relationship between changes in neural activity, neurovascular coupling and vascular reactivity.  相似文献   
8.
Blood oxygenation level dependent (BOLD) response related to interictal activity was evaluated in a patient with post-traumatic focal epilepsy at repeated continuous electroencephalogram (EEG)-functional magnetic resonance imaging examinations. Lateralized interictal EEG activity induced a main cluster of activation co-localized with the anatomical lesion. Spreading of EEG interictal activity to both frontal lobes evoked bilateral clusters of activation indicating that topography of BOLD response might depend on the spatial distribution of epileptiform activity.  相似文献   
9.
We investigate the relationship between the temporal variation in the magnitude of occipital visual evoked potentials (VEPs) and of haemodynamic measures of brain activity obtained using both blood oxygenation level dependent (BOLD) and perfusion sensitive (ASL) functional magnetic resonance imaging (fMRI). Volunteers underwent a continuous BOLD fMRI scan and/or a continuous perfusion-sensitive (gradient and spin echo readout) ASL scan, during which 30 second blocks of contrast reversing visual stimuli (at 4 Hz) were interleaved with 30 second blocks of rest (visual fixation). Electroencephalography (EEG) and fMRI were simultaneously recorded and following EEG artefact cleaning, VEPs were averaged across the whole stimulation block (120 reversals, VEP120) and at a finer timescale (15 reversals, VEP15). Both BOLD and ASL time-series were linearly modelled to establish: (1) the mean response to visual stimulation, (2) transient responses at the start and end of each stimulation block, (3) the linear decrease between blocks, (4) the nonlinear between-block variation (covariation with VEP120), (5) the linear decrease within block and (6) the nonlinear variation within block (covariation with VEP15).  相似文献   
10.
The purpose of the present work was to investigate the correlation between topographical changes in brain oscillatory activity and the blood oxygenation level-dependent (BOLD) signal during a motor imagery (MI) task using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) coregistration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号