首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   0篇
化学   2篇
物理学   64篇
  2014年   4篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   13篇
  2009年   8篇
  2008年   10篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
11.
Neuroimaging methodology predominantly relies on the blood oxygenation level dependent (BOLD) signal. While the BOLD signal is a valid measure of neuronal activity, variances in fluctuations of the BOLD signal are not only due to fluctuations in neural activity. Thus, a remaining problem in neuroimaging analyses is developing methods that ensure specific inferences about neural activity that are not confounded by unrelated sources of noise in the BOLD signal. Here, we develop and test a new algorithm for performing semiblind (i.e., no knowledge of stimulus timings) deconvolution of the BOLD signal that treats the neural event as an observable, but intermediate, probabilistic representation of the system's state. We test and compare this new algorithm against three other recent deconvolution algorithms under varied levels of autocorrelated and Gaussian noise, hemodynamic response function (HRF) misspecification and observation sampling rate. Further, we compare the algorithms' performance using two models to simulate BOLD data: a convolution of neural events with a known (or misspecified) HRF versus a biophysically accurate balloon model of hemodynamics. We also examine the algorithms' performance on real task data. The results demonstrated good performance of all algorithms, though the new algorithm generally outperformed the others (3.0% improvement) under simulated resting-state experimental conditions exhibiting multiple, realistic confounding factors (as well as 10.3% improvement on a real Stroop task). The simulations also demonstrate that the greatest negative influence on deconvolution accuracy is observation sampling rate. Practical and theoretical implications of these results for improving inferences about neural activity from fMRI BOLD signal are discussed.  相似文献   
12.
Vascular space occupancy (VASO) is a magnetic resonance imaging technique sensitive to cerebral blood volume, and is a potential alternative to the blood oxygenation level dependent (BOLD) sensitive technique as a basis for functional mapping of the neurovascular response to a task. Many implementations of VASO have made use of echo-planar imaging strategies that allow rapid acquisition, but risk introducing potentially confounding BOLD effects. Recently, multi-slice and 3D VASO techniques have been implemented to increase the imaging volume beyond the single slice of early reports. These techniques usually rely, however, on advanced scanner software or hardware not yet available in many centers. In the present study, we have implemented a short-echo time, multi-shot 3D Turbo Spin-Echo (TSE) VASO sequence that provided 8-slice coverage on a routine clinical scanner. The proposed VASO sequence was tested in assessing the response of the human motor cortex during a block design finger tapping task in 10 healthy subjects. Significant VASO responses, inversely correlated with the task, were found at both individual and group level. The location and extent of VASO responses were in close correspondence to those observed using a conventional BOLD acquisition in the same subjects. Although the spatial coverage and temporal resolution achieved were limited, robust and consistent VASO responses were observed. The use of a susceptibility insensitive volumetric TSE VASO sequence may have advantages in locations where conventional BOLD and echo-planar based VASO imaging is compromised.  相似文献   
13.
In designing a functional imaging experiment or analyzing data, it is typically assumed that task duration and hemodynamic response are linearly related to each other. However, numerous human and animal studies have previously reported a deviation from linearity for short stimulus durations (<4 s). Here, we investigated nonlinearities of blood-oxygenation-level-dependent (BOLD) signals following visual stimulation of 5 to 1000 ms duration at two different luminance levels in human subjects. It was found that (a) a BOLD response to stimulus durations as short as 5 ms can be reliably detected; this stimulus duration is shorter than employed in any previous study investigating BOLD signal time courses; (b) the responses are more nonlinear than in any other previous study: the BOLD response to 1000 ms stimulation is only twice as large as the BOLD response to 5 ms stimulation although 200 times more photons were projected onto the retina; (c) the degree of nonlinearity depends on stimulus intensity; that is, nonlinearities have to be characterized not only by stimulus duration but also by stimulus features like luminance. These findings are especially of most practical importance in rapid event-related functional magnetic resonance imaging (fMRI) experimental designs. In addition, an 'initial dip' response--thought to be generated by a rapid increase in cerebral metabolic rate of oxygen metabolism (CMRO2) relative to cerebral blood flow--was observed and shown to colocalize well with the positive BOLD response. Highly intense stimulation, better tolerated by human subjects for short stimulus durations, causes early CMRO2 increase, and thus, the experimental design utilized in this study is better for detecting the initial dip than standard fMRI designs. These results and those from other groups suggest that short stimulation combined with appropriate experimental designs allows neuronal events and interactions to be examined by BOLD signal analysis, despite its slow evolution.  相似文献   
14.
We report studies of the nonlinear nature of blood oxygen level-dependent (BOLD) responses to short transient deactivations in human visual cortex. Both functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) have been used to compare and contrast the hemodynamic response functions (HRFs) associated with transient activation and deactivation in primary visual cortex. We show that signal decreases for short duration deactivations are smaller than corresponding signal increases in activation studies. Moreover, the standard balloon model of BOLD effects may be modified to account for the observed nonlinear nature of deactivations by appropriate changes to simple hemodynamic parameters without recourse to new assumptions about the nature of the coupling between activity and oxygen use.  相似文献   
15.
The present work explores the possibility of localizing veins with magnetic resonance venography using susceptibility weighted imaging. It also seeks new approaches, directed by the spatial specificity of activated brain regions, that have sufficient precision for practical use in functional MRI studies. A 3D flow compensated multiple gradient echo sequence, featuring optimized T2* weighting within a reasonable time of acquisition (11 min) and a small voxel size (0.5x0.5x1 mm3), was used to acquire MR images at 3 T. Post-processing consisted of homodyne filtering, linear phase scaling and magnitude masking prior to minimum intensity projection (mIP). The multiple echo approach provided a satisfactory (48+/-7%) increase in signal-to-noise ratio with respect to conventional methods. Specific features of the blood oxygenation level-dependent phase effect were simulated and used for designing and exploring different phase masking methods in relation to vessel morphology and MRI voxel geometry. As with simulations, the best results were obtained with an asymmetric triangular phase masking, featuring an improved venographic contrast without any increase in the full-width at half-maximum. The multiple echo approach provided satisfactory vessel localization capacity by using asymmetric triangular phase masking and a 4-mm-thick mIP. The venographic contrast obtained enabled the detection of vessels with diameter down to approximately 500 microm, suggesting the applicability of the proposed method as an additional technique in fMRI studies.  相似文献   
16.
Functional magnetic resonance imaging (fMRI) is widely used to pinpoint active brain areas. Changes in neuronal activity modulate the local blood oxygenation level, and the associated modulation of the magnetic field homogeneity can be detected with magnetic resonance imaging. Thus, the blood oxygenation level-dependent (BOLD) fMRI indirectly measures neuronal activity. Similar modulation of magnetic field homogeneity was here elicited by other means to generate a BOLD-like change in a new phantom constructed to provide reference activations during fMRI. Magnetic inhomogeneities were produced by applying current to coils located near the phantom containing 1.5 ml of Gd-doped water. The signal-to-noise ratio of the images, produced by gradient-recalled echo-planar imaging, varied between 104 and 107 at a selected voxel when the field was and was not inhomogenized, respectively. The contrast of signals between homogeneous and inhomogeneous conditions was generally stable, except in 3% of time points. During the periods of greatest deviations an observable change would have been detected in a simultaneously measured BOLD signal. Such changes could result from the imaging method or occur through glitches in hardware or alterations in the measurement environment. With identical measurement setups, the phantom could allow comparing intersession or intersubject brain activations.  相似文献   
17.
Noninvasive functional studies on human spinal cord by means of magnetic resonance imaging (MRI) are gaining attention because of the promising applications in the study of healthy and injured central nervous system. The findings obtained are generally consistent with the anatomic knowledge based on invasive methods, but the origin and specificity of functional contrast is still debated. In this paper, a review of current knowledge and major issues about functional MRI (fMRI) in the human spinal cord is presented, with emphasis on the main methodological and technical problems and on forthcoming applications as clinical tool.  相似文献   
18.
Functional T1ρ mapping has been proposed as a method to assess pH and metabolism dynamics in the brain with high spatial and temporal resolution. The purpose of this work is to describe and evaluate a variant of the spin-locked echo-planar imaging sequence for functional T1ρ mapping at 3 T. The proposed sequence rapidly acquires a time series of T1ρ maps with 4.0 second temporal resolution and 10 slices of volumetric coverage. Simulation, phantom, and in vivo experiments are used to evaluate many aspects of the sequence and its implementation including fidelity of measured T1ρ dynamics, potential confounds to the T1ρ response, imaging parameter tradeoffs, time series analysis approaches, and differences compared to blood oxygen level dependent functional magnetic resonance imaging. It is shown that the high temporal resolution and volumetric coverage of the sequence are obtained with some expense including underestimation of the T1ρ response, sensitivity to T1 dynamics, and reduced signal-to-noise ratio. In vivo studies using a flashing checkerboard functional magnetic resonance imaging paradigm suggest differences between T1ρ and blood oxygen level dependent activation patterns. Possible sources of the functional T1ρ response and potential sequence improvements are discussed. The capability of T1ρ to map whole-brain pH and metabolism dynamics with high temporal and spatial resolution is potentially unique and warrants further investigation and development.  相似文献   
19.
Relative cerebral blood volume (CBV) was estimated using a mild hypoxic challenge in humans, combined with BOLD contrast gradient-echo imaging at 3 T. Subjects breathed 16% inspired oxygen, eliciting mild arterial desaturation. The fractional BOLD signal change induced by mild hypoxia is expected to be proportional to CBV under conditions in which there are negligible changes in cerebral perfusion. By comparing the regional BOLD signal changes arising with the transition between normoxia and mild hypoxia, we calculated CBV ratios of 1.5±0.2 (mean±S.D.) for cortical gray matter to white matter and 1.0±0.3 for cortical gray matter to deep gray matter.  相似文献   
20.
脑功能核磁共振成像在精神疾病中的应用   总被引:1,自引:0,他引:1  
主要介绍了几种脑功能核磁共振成像方法以及在精神疾病中的研究情况.血氧水平依赖fMRI (BOLD-fMRI)是目前应用最广泛的fMRI技术,可利用神经激活后对局部血流的影响,间接显示神经活动.灌注加权成像是直接测定脑血流的fMRI技术,但由于它的时间分辨率比较低,对快速的脑功能难以进行研究.扩散加权象目前主要用于脑缺血的早期诊断,利用该技术也可示踪神经通路.化学位移成像能够检测局部组织代谢产物的含量,可反映不同脑区能量和物质代谢的状况,也是一种脑功能的研究手段.尽管这些技术在神经、心理学领域已经取得非常可喜的进展,目前fMRI在精神疾病方面的工作较少,相信随着技术的改进,fMRI必将在精神疾病方面大显身手.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号