首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4291篇
  免费   478篇
  国内免费   88篇
化学   99篇
晶体学   11篇
力学   1363篇
综合类   26篇
数学   1094篇
物理学   2264篇
  2024年   16篇
  2023年   50篇
  2022年   45篇
  2021年   67篇
  2020年   157篇
  2019年   139篇
  2018年   104篇
  2017年   119篇
  2016年   106篇
  2015年   130篇
  2014年   225篇
  2013年   251篇
  2012年   173篇
  2011年   266篇
  2010年   204篇
  2009年   246篇
  2008年   300篇
  2007年   240篇
  2006年   254篇
  2005年   188篇
  2004年   184篇
  2003年   195篇
  2002年   162篇
  2001年   121篇
  2000年   119篇
  1999年   88篇
  1998年   93篇
  1997年   79篇
  1996年   67篇
  1995年   57篇
  1994年   42篇
  1993年   51篇
  1992年   42篇
  1991年   50篇
  1990年   25篇
  1989年   28篇
  1988年   24篇
  1987年   20篇
  1986年   18篇
  1985年   30篇
  1984年   19篇
  1983年   7篇
  1982年   18篇
  1981年   7篇
  1980年   7篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1973年   6篇
  1971年   2篇
排序方式: 共有4857条查询结果,搜索用时 836 毫秒
1.
移动加热器法(THM)生长碲锌镉晶体时,界面稳定性对晶体生长的质量有很大影响。本文基于多物理场有限元仿真软件Comsol建立了THM生长碲锌镉晶体的数值模拟模型,讨论了Te边界层与组分过冷区之间的关系,对不同生长阶段的物理场、Te边界层与组分过冷区进行仿真研究,最后讨论了微重力对物理场分布的影响,并对比了微重力与正常重力下的生长界面形貌。模拟结果表明,Te边界层与组分过冷区的分布趋势是一致的,在不同生长阶段,流场中次生涡旋的位置会发生移动,从而导致生长界面的形貌随着生长的进行发生变化,同时微重力条件下形成的生长界面形貌最有利于单晶生长。因此,在晶体生长的中前期,对次生涡旋位置的控制和对组分过冷的削弱,是THM生长高质量晶体的有效方案。  相似文献   
2.
The evolution of surface gravity waves is driven by nonlinear interactions that trigger an energy cascade similarly to the one observed in hydrodynamic turbulence. This process, known as wave turbulence, has been found to display anomalous scaling with deviation from classical turbulent predictions due to the emergence of coherent and intermittent structures on the water surface. In the ocean, waves are spread over a wide range of directions, with a consequent attenuation of the nonlinear properties. A laboratory experiment in a large wave facility is presented to discuss the sensitivity of wave turbulence on the directional properties of model wave spectra. Results show that the occurrence of coherent and intermittent structures become less likely with the broadening of the wave directional spreading. There is no evidence, however, that intermittency completely vanishes.  相似文献   
3.
We extend our previous results characterizing the loading properties of a diffusing passive scalar advected by a laminar shear flow in ducts and channels to more general cross‐sectional shapes, including regular polygons and smoothed corner ducts originating from deformations of ellipses. For the case of the triangle and localized, cross‐wise uniform initial distributions, short‐time skewness is calculated exactly to be positive, while long‐time asymptotics shows it to be negative. Monte Carlo simulations confirm these predictions, and document the timescale for sign change. The equilateral triangle appears to be the only regular polygon with this property—all others possess positive skewness at all times. Alternatively, closed‐form flow solutions can be constructed for smooth deformations of ellipses, and illustrate how both nonzero short‐time skewness and the possibility of multiple sign switching in time is unrelated to domain corners. Exact conditions relating the median and the skewness to the mean are developed which guarantee when the sign for the skewness implies front (more mass to the right of the mean) or back (more mass to the left of the mean) “loading” properties of the evolving tracer distribution along the pipe. Short‐ and long‐time asymptotics confirm this condition, and Monte Carlo simulations verify this at all times. The simulations are also used to examine the role of corners and boundaries on the distribution for short‐time evolution of point source , as opposed to cross‐wise uniform, initial data.  相似文献   
4.
Near-field optical trapping can be realized with focused evanescent waves that are excited at the water–glass interface due to the total internal reflection, or with focused plasmonic waves excited on the water–gold interface. Herein, the performance of these two kinds of near-field optical trapping techniques is compared using the same optical microscope configuration. Experimental results show that only a single-micron polystyrene bead can be trapped by the focused evanescent waves, whereas many beads are simultaneously attracted to the center of the excited region by focused plasmonic waves. This difference in trapping behavior is analyzed from the electric field intensity distributions of these two kinds of focused surface waves and the difference in trapping behavior is attributed to photothermal effects due to the light absorption by the gold film.  相似文献   
5.
6.
It is believed that there are more fundamental gauge symmetries beyond those described by the Standard Model of particle physics. The scales of these new gauge symmetries are usually too high to be reachable by particle colliders. Considering that the phase transition (PT) relating to the spontaneous breaking of new gauge symmetries to the electroweak symmetry might be strongly first order, we propose considering the stochastic gravitational waves (GW) arising from this phase transition as an indirect way of detecting these new fundamental gauge symmetries. As an illustration, we explore the possibility of detecting the stochastic GW generated from the PT of \begin{document}$ {\bf{B}}-{\bf{L}}$\end{document} in the space-based interferometer detectors. Our study demonstrates that the GW energy spectrum is reachable by the LISA, Tianqin, Taiji, BBO, and DECIGO experiments only for the case where the spontaneous breaking of \begin{document}$ {\bf{B}}-{\bf{L}}$\end{document} is triggered by at least two electroweak singlet scalars.  相似文献   
7.
The interactions of bubbles and coal particles in 600 kHz ultrasonic standing waves (USW) field has been investigated. A high-speed camera was employed to record the phenomena occurred under the USW treatment. The formation and behaviors of cavitation bubbles were analyzed. Under the driving of these cavitation bubbles, whose size is from several microns to dozens of microns, coal particles were aggregated and then attracted by large bubbles due to the acoustic radiation forces. The results of USW-assisted flotation show a significant improvement in recoveries at 600 kHz, which indicates that the interactions of bubbles and particles in the USW field are more efficient than that in the conventional gravitational field. Furthermore, the sound pressure distribution of the USW was measured and predicted by a hydrophone. The analysis of gravity and buoyancy, primary and secondary Bjerknes forces shows that bubble-laden particles can be attracted by the rising bubbles under large acoustic forces. This study highlights the potential for USW technology to achieve efficient bubble-particle interactions in flotation.  相似文献   
8.
9.
陈小刚  宋金宝 《中国物理》2006,15(4):756-766
This paper studies the random internal wave equations describing the density interface displacements and the velocity potentials of N-layer stratified fluid contained between two rigid walls at the top and bottom. The density interface displacements and the velocity potentials were solved to the second-order by an expansion approach used by Longuet-Higgins (1963) and Dean (1979) in the study of random surface waves and by Song (2004) in the study of second- order random wave solutions for internal waves in a two-layer fluid. The obtained results indicate that the first-order solutions are a linear superposition of many wave components with different amplitudes, wave numbers and frequencies, and that the amplitudes of first-order wave components with the same wave numbers and frequencies between the adjacent density interfaces are modulated by each other. They also show that the second-order solutions consist of two parts: the first one is the first-order solutions, and the second one is the solutions of the second-order asymptotic equations, which describe the second-order nonlinear modification and the second-order wave-wave interactions not only among the wave components on same density interfaces but also among the wave components between the adjacent density interfaces. Both the first-order and second-order solutions depend on the density and depth of each layer. It is also deduced that the results of the present work include those derived by Song (2004) for second-order random wave solutions for internal waves in a two-layer fluid as a particular case.  相似文献   
10.
The excitation of eigen surface waves by tubular electron beams in cylindrical discharge devices is studied. The influence of the wave‐field azimuthal structure on the excitation efficiency and nonlinear stage of the plasmabeam instability is investigated both numerically and analytically. Analytical expressions for the saturation amplitude and excitation efficiency of the wave under study are derived. They are found to agree well with results obtained by numerical modelling of the plasma‐beam interaction presented in this paper. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号