首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2749篇
  免费   232篇
  国内免费   49篇
化学   32篇
晶体学   11篇
力学   1584篇
综合类   2篇
数学   848篇
物理学   553篇
  2024年   1篇
  2023年   22篇
  2022年   13篇
  2021年   32篇
  2020年   63篇
  2019年   57篇
  2018年   73篇
  2017年   72篇
  2016年   85篇
  2015年   86篇
  2014年   89篇
  2013年   227篇
  2012年   113篇
  2011年   132篇
  2010年   132篇
  2009年   167篇
  2008年   140篇
  2007年   156篇
  2006年   137篇
  2005年   156篇
  2004年   131篇
  2003年   112篇
  2002年   100篇
  2001年   70篇
  2000年   92篇
  1999年   86篇
  1998年   82篇
  1997年   69篇
  1996年   33篇
  1995年   39篇
  1994年   40篇
  1993年   49篇
  1992年   33篇
  1991年   37篇
  1990年   13篇
  1989年   22篇
  1988年   19篇
  1987年   8篇
  1986年   10篇
  1985年   6篇
  1984年   8篇
  1983年   2篇
  1982年   7篇
  1981年   3篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1969年   1篇
  1936年   1篇
排序方式: 共有3030条查询结果,搜索用时 15 毫秒
1.
2.
In this paper, we investigate the evolution of joint invariants under invariant geometric flows using the theory of equivariant moving frames and the induced invariant discrete variational complex. For certain arc length preserving planar curve flows invariant under the special Euclidean group , the special linear group , and the semidirect group , we find that the induced evolution of the discrete curvature satisfies the differential‐difference mKdV, KdV, and Burgers' equations, respectively. These three equations are completely integrable, and we show that a recursion operator can be constructed by precomposing the characteristic operator of the curvature by a certain invariant difference operator. Finally, we derive the constraint for the integrability of the discrete curvature evolution to lift to the evolution of the discrete curve itself.  相似文献   
3.
4.
A. B. Mazo 《Fluid Dynamics》2002,37(6):913-918
Plane ideal incompressible flow in a rectangular channel partitioned by a thin permeable barrier (lattice) is considered. In flowing through the lattice the stream suddenly (jumpwise) changes direction and loses energy. The flow is assumed to be vortical; the vorticity is discontinuous on the lattice. A mathematical formulation of the problem for the stream function is proposed in the form of a nonlinear elliptic equation with coefficients discontinuous on the lattice line. A numerical solution is constructed using the finite-element iteration method. The results of the numerical simulation show how the flow velocity profile in the channel can be controlled by means of permeable barriers.  相似文献   
5.
We generalize an analogy between rotating and stratified shear flows. This analogy is summarized in Table 1. We use this analogy in the unstable case (centrifugally unstable flow vs. convection) to compute the torque in Taylor-Couette configuration, as a function of the Reynolds number. At low Reynolds numbers, when most of the dissipation comes from the mean flow, we predict that the non-dimensional torque G = T2 L, where L is the cylinder length, scales with Reynolds number R and gap width η, G = 1.46η3/2(1 - η)-7/4 R 3/2. At larger Reynolds number, velocity fluctuations become non-negligible in the dissipation. In these regimes, there is no exact power law dependence the torque versus Reynolds. Instead, we obtain logarithmic corrections to the classical ultra-hard (exponent 2) regimes: G = 0.50 . These predictions are found to be in excellent agreement with avail-able experimental data. Predictions for scaling of velocity fluctuations are also provided. Received 7 June 2001 and Received in final form 7 December 2001  相似文献   
6.
In this paper we obtain Lower Bounds (LBs) to concave cost network flow problems. The LBs are derived from state space relaxations of a dynamic programming formulation, which involve the use of non-injective mapping functions guaranteing a reduction on the cardinality of the state space. The general state space relaxation procedure is extended to address problems involving transitions that go across several stages, as is the case of network flow problems. Applications for these LBs include: estimation of the quality of heuristic solutions; local search methods that use information of the LB solution structure to find initial solutions to restart the search (Fontes et al., 2003, Networks, 41, 221–228); and branch-and-bound (BB) methods having as a bounding procedure a modified version of the LB algorithm developed here, (see Fontes et al., 2005a). These LBs are iteratively improved by penalizing, in a Lagrangian fashion, customers not exactly satisfied or by performing state space modifications. Both the penalties and the state space are updated by using the subgradient method. Additional constraints are developed to improve further the LBs by reducing the searchable space. The computational results provided show that very good bounds can be obtained for concave cost network flow problems, particularly for fixed-charge problems.  相似文献   
7.
An adaptive hierarchical grid‐based method for predicting complex free surface flows is used to simulate collapse of a water column. Adapting quadtree grids are combined with a high‐resolution interface‐capturing approach and pressure‐based coupling of the Navier–Stokes equations. The Navier–Stokes flow solution scheme is verified for simulation of flow in a lid‐driven cavity at Re=1000. Two approaches to the coupling of the Navier–Stokes equations are investigated as are alternative face velocity and hanging node interpolations. Collapse of a water column as well as collapse of a water column and its subsequent interaction with an obstacle are simulated. The calculations are made on uniform and adapting quadtree grids, and the accuracy of the quadtree calculations is shown to be the same as those made on the equivalent uniform grids. Results are in excellent agreement with experimental and other numerical data. A sharp interface is maintained at the free surface. The new adapting quadtree‐based method achieves a considerable saving in the size of the computational grid and CPU time in comparison with calculations made on equivalent uniform grids. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
8.
Hydrodynamic simulations of sloshing phenomena often involve the application of slip boundary condition at the wetted surfaces. If these surfaces are curved, the ambiguous nature of the normal vector in the discretized problem can interfere with the application of such a boundary condition. Even the use of consistent normal vectors, preferred from the point of view of conservation, does not assure good approximation of the continuum slip condition in the discrete problem, and non‐physical recirculating flow fields may be observed. As a remedy, we consider the Navier slip condition, and more successfully, the so‐called BC‐free boundary condition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
This paper presents a numerical study of a two‐dimensional time‐dependent flow around a cylinder. Its main objective is to provide accurate reference values for the maximal drag and lift coefficient at the cylinder and for the pressure difference between the front and the back of the cylinder at the final time. In addition, the accuracy of these values obtained with different time stepping schemes and different finite element methods is studied. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
10.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号