首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   17篇
  国内免费   9篇
化学   40篇
晶体学   4篇
力学   8篇
综合类   1篇
数学   1篇
物理学   97篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   11篇
  2012年   7篇
  2011年   14篇
  2010年   10篇
  2009年   8篇
  2008年   6篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有151条查询结果,搜索用时 234 毫秒
1.
The role of positive gaseous ions in the formation of secondary electron images in low vacuum scanning electron microscopes is discussed. This paper describes the charging processes and related effects that occur during high vacuum imaging of insulators and then discusses the influence of ions on those processes. The ions are responsible for a number of phenomena, including distortion of the electric field above and below the specimen surface due to space charge, removal of excess negative charge from the specimen, alteration of the specimen surface barrier, and scavenging/filtering of the secondary electron emission. The resulting electron-specimen-ion interactions can give rise to interesting contrast effects that are unique to this class of instruments.  相似文献   
2.
聚合物纳米复合电介质   总被引:1,自引:0,他引:1  
黄兴溢  江平开  金天雄  柯清泉 《化学进展》2007,19(11):1776-1782
聚合物纳米复合材料能够发挥纳米材料在电、磁、光等方面的优越性,也具有聚合物的易成型等方面的优点,正成为电介质领域研究的热点.本文综述了聚合物纳米复合材料在介电性能方面的研究概况,主要涉及了电导、介电强度与空间电荷、介电常数、介电损耗以及局部放电等方面的研究.最后展望了今后的研究方向.  相似文献   
3.
The accuracy of ultrashallow depth profiling was studied by secondary ion mass spectrometry (SIMS) and high‐resolution Rutherford backscattering spectroscopy (HRBS) to obtain reliable depth profiles of ultrathin gate dielectrics and ultrashallow dopant profiles, and to provide important information for the modeling and process control of advanced complimentary metal‐oxide semiconductor (CMOS) design. An ultrathin Si3N4/SiO2 stacked layer (2.5 nm) and ultrashallow arsenic implantation distributions (3 keV, 1 × 1015 cm?2) were used to explore the accuracy of near‐surface depth profiles measured by low‐energy O2+ and Cs+ bombardment (0.25 and 0.5 keV) at oblique incidence. The SIMS depth profiles were compared with those by HRBS. Comparison between HRBS and SIMS nitrogen profiles in the stacked layer suggested that SIMS depth profiling with O2+ at low energy (0.25 keV) and an impact angle of 78° provides accurate profiles. For the As+‐implanted Si, the HRBS depth profiles clearly showed redistribution in the near‐surface region. In contrast, those by the conventional SIMS measurement using Cs+ primary ions at oblique incidence were distorted at depths less than 5 nm. The distortion resulted from a long transient caused by the native oxide. To reduce the transient behavior and to obtain more accurate depth profiles in the near‐surface region, the use of O2+ primary ions was found to be effective, and 0.25 keV O2+ at normal incidence provided a more reliable result than Cs+ in the near‐surface region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
4.
The structure I clathrate hydrate of carbon monoxide has been studied using dielectric measurements and13C NMR spectroscopy. Broad, weak dielectric absorption curves with maxima at 2.2–3.8 K yieldE a = 0.14 kJ mol–1 for the average Arrhenius activation energy associated with the reorientation of the low polarity guest. Except for H2S this represents the fastest reorienting polar guest known among the clathrate hydrates. The low temperature dielectric absorption curves can best be fitted with a Cole-Davidson asymmetric distribution of relaxation times and activation energies (with = 0.06 at 4 × 106 Hz), which at 107 Hz has been resolved into a double symmetric distribution of discrete relaxation times for CO in the small and large cages. The cross-polarization magic angle spinning13C NMR spectra indicate identical chemical shifts for CO in the small and large cages, in contrast to other hydrates. The static spectra show that the CO molecules undergo anisotropic reorientation in the large cages and that there is still considerable mobility at 77 K. One possible model for the anisotropic motion has the CO rapidly moving among sites over each of the 14 faces of the cage with the CO axis orientated towards the cage centre. The cage occupancy ratio at 220 K, s/ L = 1.11, indicates slightly greater preference of CO for the small cage.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   
5.
高介电常数陶瓷储能脉冲形成线需要用到多开关触发的层叠Blumlein线结构。从形成线波过程理论出发,分析了多开关导通时间分散性对层叠Blumlein线及其输出波形的影响。主要包括两方面影响:其一是造成输出方波脉冲的前沿和后沿均出现阶梯形畸变;其二是使得各延迟导通的平行平板Blumlein线承受过电压,容易引起陶瓷储能介质的电击穿。在不单独考虑开关电感的理想情况下,利用PSpice电路程序模拟了开关导通时间分散性对四级层叠Blumlein线的影响,模拟结果与波过程理论分析一致。为减弱这些影响,提出了可行的解决方案。  相似文献   
6.
7.
A low-operating voltage and high performance polymeric field effect transistors using octadecylphosphonic acid-treated high-k AlOx and HfO2 hybrid dielectrics were demonstrated. High-k metal oxide hybrid dielectrics were prepared by oxygen plasma treatment of deposited Al film for AlOx and by spin coating of solution-processable HfO2 sol-gel solution for HfO2 in combination with phosphoric acid-based self-assembled monolayer (SAM), resulting in high capacitance (10 nF/cm2 for SiO2, 600 nF/cm2 for AlOx and 580 nF/cm2 for HfO2). With phosphoric acid-based SAM on high-k metal oxide and thermal annealing of thieno[3,2-b]thiophene-based conducting polymer, the device performance was significantly enhanced. The highest mobility of the transistors using ODPA-treated AlOx as a gate dielectric is 2.3 × 10?2 cm2 V?1 s?1 in the saturation region with the source-drain of ?2 V. In ODPA-treated HfO2 hybrid dielectric, the saturated mobility is 1.1 × 10?2 cm2 V?1 s?1 and the threshold voltage was measured to be ?0.31 V, which is at least one order lower than SiO2 hybrid dielectric (?3 V).  相似文献   
8.
In this study, GaAs metal–oxide–semiconductor (MOS) capacitors using Y‐incorporated TaON as gate dielectric have been investigated. Experimental results show that the sample with a Y/(Y + Ta) atomic ratio of 27.6% exhibits the best device characteristics: high k value (22.9), low interfacestate density (9.0 × 1011 cm–2 eV–1), small flatband voltage (1.05 V), small frequency dispersion and low gate leakage current (1.3 × 10–5A/cm2 at Vfb + 1 V). These merits should be attributed to the complementary properties of Y2O3 and Ta2O5:Y can effectively passivate the large amount of oxygen vacancies in Ta2O5, while the positively‐charged oxygen vacancies in Ta2O5 are capable of neutralizing the effects of the negative oxide charges in Y2O3. This work demonstrates that an appropriate doping of Y content in TaON gate dielectric can effectively improve the electrical performance for GaAs MOS devices.

Capacitance–voltage characteristic of the GaAs MOS capacitor with TaYON gate dielectric (Y content = 27.6%) proposed in this work with the cross sectional structure and dielectric surface morphology as insets.  相似文献   

9.
Silicon oxide (SiO2) and silicon oxynitride (SiOxNy) are two key dielectrics used in silicon devices. The excellent interface properties of these dielectrics with silicon have enabled the tremendous advancement of metal-oxide-semiconductor (MOS) technology. However, these dielectrics are still found to have pronounced amount of localized states which act as electron or hole traps and lead to the performance and reliability degradations of the MOS integrated circuits. A better understanding of the nature of these states will help to understand the constraints and lifetime performance of the MOS devices. Recently, due to the available of ab initio quantum-mechanical calculations and some synchrotron radiation experiments, substantial progress has been achieved in understanding the atomic and electronic nature of the defects in these dielectrics. In this review, the properties, formation and removal mechanisms of various defects in silicon oxide and silicon oxynitride films will be critically discussed. Some remarks on the thermal ionization energies in connection with the optical ionization energies of electron and hole traps, as well as some of the unsolved issues in these materials will be highlighted.  相似文献   
10.
Prosperetti’s seminal Physalis method, an Immersed Boundary/spectral method, had been used extensively to investigate fluid flows with suspended solid particles. Its underlying idea of creating a cage and using a spectral general analytical solution around a discontinuity in a surrounding field as a computational mechanism to enable the accommodation of physical and geometric discontinuities is a general concept, and can be applied to other problems of importance to physics, mechanics, and chemistry. In this paper we provide a foundation for the application of this approach to the determination of the distribution of electric charge in heterogeneous mixtures of dielectrics and conductors. The proposed Physalis method is remarkably accurate and efficient. In the method, a spectral analytical solution is used to tackle the discontinuity and thus the discontinuous boundary conditions at the interface of two media are satisfied exactly. Owing to the hybrid finite difference and spectral schemes, the method is spectrally accurate if the modes are not sufficiently resolved, while higher than second-order accurate if the modes are sufficiently resolved, for the solved potential field. Because of the features of the analytical solutions, the derivative quantities of importance, such as electric field, charge distribution, and force, have the same order of accuracy as the solved potential field during postprocessing. This is an important advantage of the Physalis method over other numerical methods involving interpolation, differentiation, and integration during postprocessing, which may significantly degrade the accuracy of the derivative quantities of importance. The analytical solutions enable the user to use relatively few mesh points to accurately represent the regions of discontinuity. In addition, the spectral convergence and a linear relationship between the cost of computer memory/computation and particle numbers results in a very efficient method. In the present paper, the accuracy of the method is numerically investigated by example computations using one dielectric particle, one isolated conductor particle, one conductor particle connected to an external source with imposed voltage, and two conductor/dielectric particles with strong interactions. The efficiency of the method is demonstrated with one million particles, which suggests that the method can be used for many important engineering applications of broad interest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号