首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10121篇
  免费   911篇
  国内免费   765篇
化学   6264篇
晶体学   173篇
力学   89篇
综合类   12篇
数学   19篇
物理学   5240篇
  2024年   6篇
  2023年   121篇
  2022年   159篇
  2021年   219篇
  2020年   257篇
  2019年   218篇
  2018年   233篇
  2017年   223篇
  2016年   377篇
  2015年   387篇
  2014年   414篇
  2013年   722篇
  2012年   423篇
  2011年   632篇
  2010年   509篇
  2009年   734篇
  2008年   633篇
  2007年   895篇
  2006年   801篇
  2005年   515篇
  2004年   543篇
  2003年   407篇
  2002年   308篇
  2001年   281篇
  2000年   263篇
  1999年   257篇
  1998年   231篇
  1997年   185篇
  1996年   137篇
  1995年   119篇
  1994年   105篇
  1993年   90篇
  1992年   54篇
  1991年   47篇
  1990年   38篇
  1989年   24篇
  1988年   32篇
  1987年   35篇
  1986年   32篇
  1985年   26篇
  1984年   17篇
  1983年   7篇
  1982年   13篇
  1981年   14篇
  1980年   11篇
  1979年   6篇
  1978年   8篇
  1977年   6篇
  1974年   5篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
2.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
3.
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.  相似文献   
4.
The PeakForce Quantitative Nanomechanical Mapping based on atomic force microscope (AFM) is employed to first visualize and then quantify the elastic properties of a model nitrile rubber/poly(vinyl chloride) (NBR/PVC) blend at the nanoscale. This method allows us to consistently observe the changes in mechanical properties of each phase in polymer blends. Beyond measuring and discriminating elastic modulus and adhesion forces of each phase, we tune the AFM tips and the peak force parameters in order to reliably image samples. In view of viscoelastic difference in each phase, a three‐phase coexistence of an unmixed NBR phase, the mixed phase, and PVC microcrystallites is directly visualized in NBR/PVC blends. The nanomechanical investigation is also capable of recognizing the crosslinked rubber phase in cured rubber. The contribution of the mixed phase was quantified and it was found that the mechanical properties of blends are mainly determined by the homogeneity and stiffness of the mixed phase. This study furthers our understanding the structure–mechanical property relationship of thermoplastic elastomers, which is important for their potential design and applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 662–669  相似文献   
5.
Raman chemical imaging provides chemical and spatial information about pharmaceutical drug product. By using resolution methods on acquired spectra, the objective is to calculate pure spectra and distribution maps of image compounds. With multivariate curve resolution-alternating least squares, constraints are used to improve the performance of the resolution and to decrease the ambiguity linked to the final solution. Non negativity and spatial local rank constraints have been identified as the most powerful constraints to be used.  相似文献   
6.
ABSTRACT

The authors present the results of an investigation in Fe–Ni-Cr austenitic alloys of the low-temperature deformation-induced segregations of nickel that form in the micro regions being (i) located close to grain- and subgrain boundaries and (ii) characteristic of the concentration and magnetic inhomogeneities indicated by the appearance of a dark diffraction contrast at the electron diffraction patterns taken from these regions typical (at the same time) of an enhanced value of Curie temperature. The observed effects were connected with the micro distortions caused by the local change of lattice parameter because of an increase in nickel concentration, as well as in the result of a magnetostriction dilatation. Using methods of the X-ray energy dispersive spectroscopy (XEDS) and atomic-probe body-section radiography (tomography – APT) has made it possible to determine the borders of those regions of austenite that were characteristic of an enhanced concentration of nickel in the fields of the localisation of a deformation-induced segregation of nickel in the vicinity of grain (subgrain) boundaries of austenitic alloys of the types Fe–13Cr–30Ni and Fe–37Ni–3Ti.  相似文献   
7.
By employing the perturbation formulae of the spin Hamiltonian parameters (SHPs) (g factors gxx, gyy, gzz, hyperfine structure constants Axx, Ayy, Azz and superhyperfine parameters Axx׳, Ayy׳, Azz׳) for a 3d1 ion in orthorhombically elongated octahedra and tetrahedra, the defect structures and the experimental EPR spectra are theoretically and systematically investigated for the two orthorhombic Ti3+ centers C1 and C2 in ZnWO4. Center C1 is ascribed to the impurity Ti3+ at host W6+ site associated with two nearest neighbor oxygen vacancies due to charge compensation. The resultant tetrahedral [TiO4]5– cluster is determined to undergo the local orthorhombic elongation distortion, characterized by the axial distortion angle Δθ (=θθ0≈–6.84°) of the local impurity-ligand bond angle θ related to θ0 (≈54.74°) and the perpendicular distortion angle Δε (=εε0≈2.5°) related to ε0 (≈45°) of an ideal tetrahedron because of the Jahn–Teller effect. Center C2 is attributed to Ti3+ on Zn2+ site, and this octahedral [TiO6]9– cluster may experience the local axial elongation ΔZ (≈0.001 Ǻ) and the planar bond angle variation Δφ (≈9.1°) due to the Jahn–Teller effect, resulting in a more regular oxygen octahedron. All the calculated SHPs (i.e., g factors for both centers, the hyperfine structure constants for center C2 and superhyperfine parameters of next nearest neighbor ligand W for center C1) show good agreement with the observed values. However, the theoretical results based on the previous assignment of center C1 as Ti3+ on W6+ site with only one nearest planar oxygen vacancy (i.e., five-fold coordinated octahedral [TiO5]7– cluster) show much worse agreement with the experimental data. The defect structures and the SHPs (especially the g anisotropies) are discussed for both centers. The present studies on the superhyperfine parameters of ligand W6+ for center C1 would be helpful to further investigations on the superhyperfine interactions of cation ligands which were rather scarcely treated before.  相似文献   
8.
The effect of Re addition on the microstructure and hardening behaviour of the dual two-phase Ni3Al (L12) and Ni3V (D022) intermetallic alloy was investigated by scanning electron microscopy, transmission electron microscopy and Vickers hardness test. The two-phase eutectoid microstructure accompanying the Re-rich precipitates were observed in the channel region of the alloys in which Re substituted for Ni but not in those in which Re substituted for Al and V. The concomitant addition of Nb (or Ta) with Re more stabilized the two-phase eutectoid microstructure and consequently more induced the fine precipitates in the channel region. The annealing at temperatures below the eutectoid temperature was necessary to induce the fine precipitates in the channel region and thereby result in the precipitation hardening. The fine precipitation in the channel region and related hardening was attributed to the alloying feature so that Re is soluble in the A1 (fcc) phase at high temperatures and becomes less soluble in the two intermetallic phases decomposed from the A1 phase at low temperatures.  相似文献   
9.
Activated carbon production from almond shells using phosphoric acid activation agent was achieved by applying both conventional heating and microwave heating in succession. The morphology and surface properties of activated carbon were studied using thermogravimetric and differential gravimetric analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, and Brunauer–Emmett–Teller analysis. A surface area of 1128 m2/g was achieved by optimizing the microwave power (500?W), microwave application time (15?minutes), conventional heating time (45?minutes), conventional heating temperature (500?°C), and the phosphoric acid:sample ratio (0.7:1). An adsorption capacity of methylene blue of 148?mg/g and an iodine value of 791?mg/g was obtained for the prepared activated carbon.  相似文献   
10.
In this work the results of the statistical topometric analysis of fracture surfaces of soda-lime-silica glass with and without ionic exchange treatment are reported. In this case, the mechanism of substitution is K+-Na+. atomic force microscopy (AFM) was employed to record the topometric data from the fracture surface. The roughness exponent (ζ) and the correlation length (ξ) were calculated by the variable bandwidth method. The analysis for both glasses (subjected and non-subjected to ionic exchange) for ζ shows a value ∼0.8, this value agrees well with that reported in the literature for rapid crack propagation in a variety of materials. The correlation length shows different values for each condition. These results, along with those of microhardness indentations suggest that the self-affine correlation length is influenced by the complex interactions of the stress field of microcracks with that resulting from the collective behavior of the point defects introduced by the strengthening mechanism of ionic exchange.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号