首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   6篇
  国内免费   2篇
化学   55篇
力学   6篇
数学   8篇
物理学   14篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   6篇
  2019年   7篇
  2018年   5篇
  2017年   4篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
  2001年   2篇
  1991年   1篇
  1990年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有83条查询结果,搜索用时 82 毫秒
1.
Exhaled breath condensate is a promising, non-invasive, diagnostic sample obtained by condensation of exhaled breath. Starting from a historical perspective of early attempts of breath testing towards the contemporary state-of-the-art breath analysis, this review article focuses mainly on the progress in determination of non-volatile compounds in exhaled breath condensate. The mechanisms by which the aerosols/droplets of non-volatile compounds are formed in the airways are discussed with methodological consequences for sampling. Dilution of respiratory droplets is a major problem for correct clinical interpretation of the measured data and there is an urgent need for standardization of EBC. This applies also for collection instrumentation and therefore various commercial and in-house built devices are described and compared with regard to their design, function and collection parameters. The analytical techniques and methods for determination of non-volatile compounds as potential markers of oxidative stress and lung inflammation are scrutinized with an emphasis on method suitability, sensitivity and appropriateness. The relevance of clinical findings for each group of possible non-volatile markers of selected pulmonary diseases and methodological recommendations with emphasis on interdisciplinary collaboration that is essential for future development into a fully validated clinical diagnostic tool are given.  相似文献   
2.
A sensitive and accurate LC–MS/MS method was established for quantifying salvianolic acid B (Sal B), rosmarinic acid (Ros A) and Danshensu (DA) in rat plasma. Salvia miltiorrhiza polyphenolic acid (SMPA), active water‐soluble ingredients isolated and purified from Salvia miltiorrhiza Bge included Sal B, Ros A and DA. The pharmacokinetic analysis of Sal B, Ros A and DA after pulmonary administration of SMPA solution to rat was performed by LC–MS/MS. Results from the pharmacokinetic studies showed that the peak concentration of DA was 21.85 ± 6.43 and 65.39 ± 3.83 ng/mL after pulmonary and intravenous administration, respectively. DA was not detected at 2 h after administration. The absolute bioavailabilities of Sal B and Ros A were respectively 50.37 ± 27.04 and 89.63 ± 12.16% after pulmonary administration of 10 mg/kg SMPA solution in rats. The absolute bioavailability of Sal B increased at least 10‐fold after pulmonary administration, compared with oral administration. It was concluded that the newly established LC–MS/MS method was suitable for describing the pharmacokinetic characteristics of Sal B, Ros A and DA in rat after pulmonary administration of SMPA solution. The data from this study will provide a preclinical insight into the feasibility of pulmonary administration of SMPA.  相似文献   
3.
A specific and robust LC–MS/MS method was developed and validated for the quantitative determination of GDC‐3280 in human plasma and urine. The nonspecific binding associated with urine samples was overcome by the addition of CHAPS. The sample volume was 25 μL for either matrix, and supported liquid extraction was employed for analyte extraction. d6‐GDC‐3280 was used as the internal standard. Linear standard curves (R2 > 0.9956) were established from 5.00 to 5000 ng/mL in both matrices with quantitation extended to 50,000 ng/mL through dilution. In plasma matrix, the precision (RSD) ranged from 1.5 to 9.9% (intra‐run) and from 2.4 to 7.2% (inter‐run); the accuracy (RE) ranged from 96.1 to 107% (intra‐run) and from 96.7 to 104% (inter‐run). Similarly, in urine the precision was 1.5–6.2% (intra‐run) and 1.9–6.1% (inter‐run); the accuracy was 83.1–99.3% (intra‐run) and 87.1–98.3% (inter‐run). Good recovery (>94%) and negligible matrix effect were achieved in both matrices. Long‐term matrix stability was established for at least 703 days in plasma and 477 days in urine. Bench‐top stability of 25 h and five freeze–thaw cycles were also confirmed in both matrices. The method was successfully implemented in GDC‐3280's first‐in‐human trial for assessing its pharmacokinetic profiles.  相似文献   
4.
A modified method for preparing 99mTc-FHMA for pulmonary studies is elabrated. It includes a new antioxidant sodium metabisulphite. The optimum conditions for the reparation are given. A simple and rapid procedure with a yield more than 98% is described which eliminates a further purification step.  相似文献   
5.
本文详细论述了毛细管和二维狭缝中流过血液时的Fahraeus效应研究历史及现状,给出了迄今为止得到的全部结论,并报道了笔者对狭缝缝隙中Fahraeus效应研究的最新进展。本文所涉及的内容对于微循环的理论与应用以至有关流变学仪器的设计优化都有重要意义。  相似文献   
6.
Deregulation of endothelial nitric oxide synthase (eNOS) plays an important role in the development of multiple cardiovascular diseases. Our recent study demonstrated that genistein supplementation attenuates pulmonary arterial hypertension in broilers by restoration of endothelial function. In this study, we investigated the molecular mechanism by using broiler pulmonary arterial endothelial cells (PAECs). Our results showed that genistein stimulated a rapid phosphorylation of eNOS at Ser(1179) which was associated with activation of eNOS/NO axis. Further study indicated that the activation of eNOS was not mediated through estrogen receptors or tyrosine kinase inhibition, but via a phosphatidylinositol 3-kinase (PI3K)/Akt-dependent signaling pathway, as the eNOS activity and related NO release were largely abolished by pharmacological inhibitors of PI3K or Akt. Thus, our findings revealed a critical function of Akt in mediating genistein-stimulated eNOS activity in PAECs, partially accounting for the beneficial effects of genistein on the development of cardiovascular diseases observed in animal models.  相似文献   
7.
8.
The purpose of this study was to fabricate porous poly(lactide-co-glycolide) (PLGA) microparticles for efficient pulmonary deposition and increased therapeutic duration of the antioxidant anthocyanin (ATH). These microparticles were prepared by a water-in-oil-in-water (W(1)/O/W(2)) multi-emulsion method with vaporizing ammonium bicarbonate (AB) as a porogen and starch as a viscous additive. High porosity achieved by the decomposition reaction of AB to the base of ammonia, carbon dioxide, and water vapor at 50°C enabled efficient deposition of ATH throughout the entire lung in BALB/c mice. In addition, the porous microparticles incorporating starch showed sustained ATH release characteristics (up to 5 days) and protracted antioxidant activity (up to 5 days) for 2,2-diphenyl-1-pikryl-hydrazyl (DPPH) radicals, which was comparable to that of the porous microparticles without starch which completely released ATH in 2h. Furthermore, these porous microparticles incorporating starch led to longer ATH residence (up to 20 days) in in vivo lung epithelium. We believe that this system has great pharmaceutical potential as a long-acting antioxidant for continuously relieving oxidative stress in pulmonary diseases like chronic obstructive pulmonary disease (COPD).  相似文献   
9.
Synchrotron radiation microangiography is a powerful tool for assessing adverse changes in pulmonary vessel density associated with primary pulmonary hypertension (PH). Congestive heart failure (CHF) leads to a `secondary' onset of PH, yet it is unknown whether secondary PH is also associated with reduced vessel density. This study utilized synchrotron radiation to assess both pulmonary vessel density and endothelial function in a Dahl rat model of CHF with secondary PH. High salt‐fed Dahl salt‐sensitive (Dahl‐S) and salt‐resistant (Dahl‐R) rats were anesthetized and microangiography was performed to assess the pulmonary vessel density and vascular responses to (i) sodium nitroprusside (5.0 µg kg?1 min?1), (ii) acetylcholine (3.0 µg kg?1 min?1) and (iii) ET‐1A receptor blockade, BQ‐123 (1 mg kg?1). Dahl‐S rats developed CHF and secondary PH as evident by endothelial dysfunction, impaired vasodilatory responses to acetylcholine, enhanced vasodilatory responses to BQ‐123 and extensive pulmonary vascular remodeling. Consequently, the pulmonary vessel density was adversely reduced. Interestingly, the etiology of secondary PH manifests with structural and functional changes that are comparable with that previously reported for primary PH. One important discrepancy, however, is that ET‐1 modulation of pulmonary vessels is most striking in vessels with a diameter range of 100–200 µm in secondary PH, in contrast to a range of 200–300 µm in primary PH. Such discrepancies should be considered in future studies investigating primary and secondary forms of PH.  相似文献   
10.
Drug delivery to the body via the inhaled route is dependent upon patient status, device use, and respirable formulation characteristics. Further to inhalation, drug‐containing particles interact and dissolve within pulmonary fluid leading to the desired pharmacological response. Pulmonary surfactant stabilises the alveolar air‐liquid interface and permits optimal respiratory mechanics. This material represents the initial contacting surface for all inhaled matter. On dissolution, the fate of a drug substance can include receptor activation, membrane partitioning and cellular penetration. Here, we consider the partitioning behaviour of salbutamol when located in proximity to a simulated pulmonary surfactant monolayer at pH 7. The administration of salbutamol to the underside of the surfactant film resulted in an expanded character for the 2‐dimensional ensemble and a decrease in the compressibility term. The rate of drug partitioning was greater when the monolayer was in the expanded state (ie, inhalation end‐point), which was ascribed to more accessible areas for molecular insertion. Quantum mechanics protocols, executed via Gaussian 09, indicated that constructive interactions between salbutamol and integral components of the model surfactant film took the form of electrostatic and hydrophobic associations. The favourable interactions are thought to promote drug insertion into the monolayer structure leading to the observed expanded character. The data presented herein confirm that drug partitioning into pulmonary surfactant monolayers is a likely prospect further to the inhalation of respirable formulations. As such, this process holds potential to reduce drug‐receptor activation and/or increase the residence time of drug within the pulmonary space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号